e2v

TH7813A/TH7814A 50 MHz 1024/2048 Linear CCD

Datasheet

1. Features

- Data Rate up to 50 MHz (Two Outputs at 25 MHz each)
- Pixel Size: 10 µm x 10 µm (10 µm Pitch)
- 250 to 1100 nm Spectral Range
- High Sensitivity and Lag-free Photodiodes
- Very Low Noise (30 pJ/cm² Noise Equivalent Illumination)
- Antiblooming
- Exposure Control
- 20-lead 0.4" DIL Package
- Electrical, Mechanical and Optical Compatibility Between the Two Products

2. Applications

The TH7813 and TH7814 linear arrays are based on e2v's know-how in terms of design and technology. Flexibility and performance of these devices give the opportunity to use them in most vision systems for industrial applications (web inspection, process control, sorting and inspection of various parts), document scanning up to 200 dpi, metrology, etc.

Visit our website: www.e2v.com for the latest version of the datasheet

3. Pin Identification

All pins must be connected.

Pin Number	Symbol	Function			
4, 17	VDD1,2	Output amplifiers drain supply			
3, 18	VOS1,2	Video outputs			
5	VS	Output amplifiers substrate bias			
20	VDR	Reset drain bias			
2	VGS	Output gate bias			
14	ΦL1				
13	ΦL2	- Readout register clocks			
15	ΦR	Reset clock			
10	ФА	Antiblooming gate bias/clock			
7	VA	Antiblooming drain bias			
8	VST	Storage gate bias			
11	ΦΡ	Transfer gate clock			
1, 6, 9, 12, 16, 19	VSS	Ground, optical shield grounding (internally connected)			

 Table 3-1.
 Pin Description

4. Absolute Maximum Ratings

 Table 4-1.
 Absolute Maximum Ratings^(*NOTICE:)

Storage Temperature Range55°C to +150°C
Operating Temperature Range40°C to +85°C
Thermal Cycling15°C/mn
Maximum Applied Voltages:
• Pin: 2, 8, 10, 11, 13, 14, 150.3 to 15V
• Pin: 4, 5, 7, 17, 200.3 to 16V
• Pin: 1, 6, 9, 12, 16, 190V (ground)

*NOTICE: Stresses above those listed under absolute maximum ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

5. Operating Range and Operating Precautions

Operating range defines the limits within which the functionality is guaranteed. Electrical limits of applied signals are given in Section 6.

Shorting the video outputs to any other pin, even temporarily, can permanently damage the on-chip output amplifier.

6. Operating Conditions

			Value		
Parameter	Symbol	Min	Тур	Max	Unit
Output Amplifier Drain Supply	VDD1, VDD2	14.5	15	15.5	V
Storage Gate Bias	VST	2.2	2.4	2.6	V
Antiblooming Diode Bias	VA	14.5	15	15.5	V
Reset Bias	VDR	13.5	14	14.5	V
Antiblooming Diode Bias	VA	14.5	15	15.5	V
Register Output Gate Bias	VGS	2.2	2.4	2.6	V
Output Amplifier Source Supply	VS		0		V
Ground	VSS		0		

Table 6-1. DC Characteristics

			Value			
Parameter	Symbol	Min	Тур	Max	Unit	Comment
Reset gate	ΦR					
High level		8.5	9	9.5	V	Clock Capacitance < 25 pF
Low level		-0.1	0	0.4	V	
Transfer gate	ΦP					
High level		8.5	9	9.5	V	Clock Capacitance < 100 pF
Low level		-0.1	0	0.4	V	
Readout register clocks	ΦL1, 2					
High level		8.5	9	9.5	V	see Figure 7-1 and Figure 7-2
Low level		-0.1	0	0.4	V	
Readout register frequency	F _H		10	25	MHz	
		0	0	0	v	If antiblooming operation inhibited
Antiblooming gate	gate φA See Table 9-1 on page 8				Exposure time reduction	
			See Figure 1	0-1 on page 9		Pixel saturation adjustment

Table 6-2.Drive Clocks Characteristics

7. Clock Capacitances

Figure 7-2. Readout Register Clocks Capacitance TH7814

7.1 Timing Diagrams

The following diagram shows the general clocking scheme for the TH7813A and TH7814A.

The line is composed as follows:

Synopsis	Number of Prescan Pixels per Output	Number of Useful Pixels per Output	Total Number of Pixels per Output
TH7813A	4	512	516
TH7814A	4	1024	1028

Postscan elements may be added in order to either increase the exposure time, or to provide a voltage reference level.

The following diagram shows the timing for the transfer period.

Figure 7-3. Line Timing Diagram

 ΦR clock may also be held in high state during line transfer period.

Figure 7-4. Line Transfer Period

Diagram Figure 7-5 shows the detailed timing for the pixel readout:

Figure 7-5. Pixel Readout Timing Diagram

7.2 Exposure Time Reduction

The antiblooming structure of the TH7813A and TH7814A provides an electronic shutter capability by clocking phase ϕA during the line period. The timing diagram is described below:

Antiblooming Gate	ФА	Min	Тур	Max	Unit	Clock Capacitance ⁽¹⁾
High Level		8.5	9	9.5	V	Low Level Sets Saturation Level
Low Level		2	4	7	V	See Pixel Saturation Adjustment

Note: 1. ΦA Clock capacitance: TH7813A = 50 pF, TH7814A = 100 pF

TH7813A/TH7814A

Figure 1. Exposure Time Reduction

8. Electrical Performance

			Value			
Parameter	Symbol	Min	Тур	Max	Unit	Comments
Output Amplifier Supply Current	I _{DD}		10		mA	per amplifier
Output Impedance	Zs	200	225	250	Ω	
DC Output Level	V _{REF}		10		V	
Output Conversion Factor	CVF		5		μV/e-	
Offset in Darkness	DC off		30		mV	
Reset Feedthrough	Vft		400		mV	
CTF	CTF		65		%	
LAG	LAG			1	%	VOS > 50 mV
Charge Transfer Inefficiency (per stage)	HCTI			8.10 ⁻⁵		

 Table 8-1.
 Static and Dynamic Electrical Characteristics

9. Electro-optical Performance

- General test conditions:
 - $T_{CASE} = 25^{\circ}C$
 - Light source: 2854K with 2 mm BG38 filter (unless specified) + F/11 optical aperture
 - Typical operating conditions: 2 x 10 MHz
- All values are referred to prescan pixels level

Table 9-1.	Electro-optical	Performance	Characteristics

			Value			
Parameter	Symbol	Min	Тур	Max	Unit	Comments
Saturation Output Voltage	V _{SAT}	1.65	2	3	V	$V\Phi A = 0V$
Responsivity	R	7.5	8.5		V/µJ/cm ²	
Responsivity Unbalance			0.5%	5	%	
Photo Response Non Uniformity Peak-to-peak	PRNU		±5	±10	%V _{OS}	$\overline{\text{VOS}}$ = 50 mV to 1.5V
Dark Signal	DS		0.1	0.4	mV/ms	Depends on integration time ms
Dark Signal Non Uniformity (1σ)	DSNU			0.1	mV/ms	Depends on integration time ms
Temporal RMS Noise in Darkness	V _N		300		μV	
Dynamic Range	DR	5,500	6,600			
CTF	CTF		65		%	
LAG	LAG			1	%	VOS > 50 mV
Charge Transfer Inefficiency (per stage)	НСТІ			8.10 ⁻⁵		

TH7813A/TH7814A

10. Electro-optical Performances without Infrared Cut-off Filter

The TH7813A and TH7814A special semiconductor process enables to exploit the silicon's high near infrared sensitivity while maintaining good imaging performances in terms of response uniformity and resolution. Typical changes in performance with and without IR filtering are summarized below:

Parameter	With IR Cut-off Filter	Without IR Cut-off Filter
Average Video Signal Due to a Given Illumination	V _{OS}	6 x V _{OS}
PRNU (Single Defects Excluded)	±5%	5%
CTF at Nyquist Frequency	65%	40%

10.1 Pixel Saturation Adjustment

The TH7813A and TH7814A antiblooming structure can be used to adjust the maximum saturation voltage, by adjusting the Φ A bias voltage. The following curve shows the relation between V_{SAT} and V Φ A.

Figure 10-1. Pixel Saturation versus Antiblooming ΦA Low Level (Typical Conditions)

Typical Conditions

11. Spectral Responsivity

The following curve shows the typical responsivity for TH7813A and TH7814A.

Figure 11-1. Spectral Responsivity

TH7813A/TH7814A

11.1 Package Information

Both devices have the same optical center.

Notes: 1. Window

- 2. Photosensitive area
- 3. Optical distance between external face of window and photosensitive area
- 4. Optical distance between backside of package and photosensitive area
- 5. First pixel position (mm):

TH7813A	TH7814A
$X = 9.6 \pm 0.4$	$X = 4.5 \pm 0.4$
$Y = 5.2 \pm 0.35$	$Y = 5.2 \pm 0.35$

11.2 Ordering Code

• TH7813ACC

• TH7814ACC

e2v

How to reach us

Home page: www.e2v.com

Sales Office:

Northern Europe e2v Itd 106 Waterhouse Lane Chelmsford Essex CM1 2QU

England Tel: +44 (0)1245 493493 Fax:: +44 (0)1245 492492 E-Mail: enquiries@e2v.com

Southern Europe

e2v sas 16 Burospace F-91572 Bièvres Cedex France Tel: +33 (0) 16019 5500 Fax: +33 (0) 16019 5529 E-Mail: enquiries-fr@e2v.com

Germany and Austria

e2v gmbh Industriestraße 29 82194 Gröbenzell Germany Tel: +49 (0) 8142 41057-0 Fax:: +49 (0) 8142 284547 E-Mail: enquiries-de@e2v.com

Americas e2v inc. 4 Westchester Plaza Elmsford NY 10523-1482 USA Tel: +1 (914) 592 6050 or 1-800-342-5338, Fax: +1 (914) 592-5148 E-Mail: enquiries-na@e2v.com

Asia Pacific

e2v Itd 11/F, Onfem Tower, 29 Wyndham Street,Central, Hong Kong Tel: +852 3679 364 8/9 Fax: +852 3583 1084 E-Mail: enquiries-ap@e2v.com

Product Contact:

e2v Avenue de Rochepleine BP 123 - 38521 Saint-Egrève Cedex France Tel: +33 (0)4 76 58 30 00 Hotline: hotline-cam@e2v.com

Whilst e2v has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.