


# KAC-12040 IMAGE SENSOR 4000 (H) X 3000 (V) CMOS IMAGE SENSOR



JUNE 13, 2014 DEVICE PERFORMANCE SPECIFICATION REVISION 1.3 PS-0143



## **TABLE OF CONTENTS**

| Summary Specification                         |    |
|-----------------------------------------------|----|
| Description                                   |    |
| Features                                      | 5  |
| Applications                                  |    |
| Ordering Information                          |    |
| KAC-12040 Image Sensor                        | 6  |
| Evaluation Support                            |    |
| Device Description                            |    |
| Architecture                                  |    |
| Physical Orientation                          |    |
| Primary Pin Description                       |    |
| Power Pin Description                         |    |
| LVDS Pin Description                          |    |
| Imaging Performance                           |    |
| Typical Operation Conditions                  |    |
| Performance Specifications All Configurations | 11 |
| KAC-12040-ABA Configuration (Monochrome)      |    |
| KAC-12040-CBA Configuration (Bayer RGB)       |    |
| Typical Performance Curves                    |    |
| Quantum Efficiency                            |    |
| Monochrome with Microlens                     |    |
| Color (Bayer RGB) with Microlens              |    |
| Angular Quantum Efficiency                    |    |
| Dark Current versus Temperature               |    |
| Power vs Frame Rate                           | 16 |
| Power and Frame Rate vs ADC Bit depth         |    |
| Defect Definitions                            |    |
| Operation Conditions for Defect Testing       |    |
| Defect Definitions for Testing                |    |
| Defect Map                                    |    |
| Test Definitions                              |    |
| Test Regions of Interest                      |    |
| Test Descriptions                             |    |
| Operation                                     |    |
| Register Addresses                            |    |
| Sensor States                                 |    |
| Encoded Syncs                                 |    |
| Line Time                                     |    |
| Frame Time                                    |    |
| Global Shutter Readout                        |    |
| Rolling Shutter Readout                       |    |
| 8 Bank LVDS Data Readout                      |    |
| LVDS Banks                                    |    |
| Ports per LVDS Bank                           |    |
| 8 Bank Pixel Order                            |    |
| De-Serializer Settings                        |    |
| Register Definition                           |    |
| Absolute Maximum Ratings                      |    |
| Supplies                                      |    |
| CMOS Inputs                                   |    |
| Operating Ratings                             |    |
| Input Clock Conditions                        |    |



| Revision Changes                                     | 50 |
|------------------------------------------------------|----|
| Life Support Applications Policy                     |    |
| Mechanical                                           |    |
| Test Data Retention                                  | 49 |
| Liability of the Customer                            |    |
| Liability of the Supplier                            |    |
| Replacement                                          |    |
| Quality and Reliability                              |    |
| Quality Assurance and Reliability                    |    |
| MAR (Multi-layer AntiReflective coating) Cover Glass |    |
| Completed Assembly                                   |    |
| Mechanical Information                               |    |
| Soldering Recommendations                            |    |
| Environmental Exposure                               |    |
| Cover Glass Care and Cleanliness                     |    |
| ESD                                                  |    |
| Storage Conditions                                   |    |
| Storage and Handling                                 |    |
| Inter-block LVDS timing specification                |    |
| In-block LVDS timing specification                   |    |
| Sub-LVDS characteristics                             |    |
| Standard LVDS characteristics                        |    |
| LVDS Interface                                       |    |
| SPI timing specification                             |    |
| SPI interface                                        |    |
| SPI Protocol                                         |    |
| Clock Polarity and Phase                             |    |
| SPI (Serial Peripheral Interface)                    |    |
| Supplies                                             |    |
| CMOS IN/OUT                                          |    |
| Operating Temperature                                | 36 |



## **TABLE OF FIGURES**

| Figure 1: Block Diagram                                           |     |
|-------------------------------------------------------------------|-----|
| Figure 2: Package Pin Orientation – Top x-ray view                |     |
| Figure 3: Monochrome QE (with Microlens)                          |     |
| Figure 4: Bayer QE (with Microlens)                               |     |
| Figure 5: Monochrome Relative Angular QE (with Microlens)         |     |
| Figure 6: Bayer Relative Angular QE (with Microlens)              |     |
| Figure 7: Dark Current vs Temperature                             |     |
| Figure 8: Power vs Frame Rate, 10 bit mode                        |     |
| Figure 9: ADC Bit Depth impact on Frame Rate and Power            |     |
| Figure 10: Regions of Interest                                    |     |
| Figure 11: Sensor State Diagram                                   |     |
| Figure 12: Encoded Frame Syncs                                    |     |
| Figure 13: Default Line Time (Dual-Scan) with PLL2 = 320 MHz      |     |
| Figure 14: Default frame time configuration (Frame A)             |     |
| Figure 15: Frame time with extended integration time              |     |
| Figure 16: Illustration of frame time for Global Shutter readout  | .29 |
| Figure 17: Illustration of Frame time for Rolling Shutter readout |     |
| Figure 18: LVDS Bank labeling                                     |     |
| Figure 19: Number of LVDS pairs (ports) used vs. bit depth        |     |
| Figure 20: Pixel readout order diagram                            |     |
| Figure 21: Pixel readout order table                              |     |
| Figure 22: Data stream of one LVDS Bank for 10bits ADC resolution |     |
| Figure 23: CPOL = 1 and CPHA = 1 configuration                    |     |
| Figure 24: SPI Write byte order                                   |     |
| Figure 25: SPI Read byte order                                    |     |
| Figure 26: SPI timing chronogram                                  |     |
| Figure 27: LVDS timing chronogram                                 |     |
| Figure 28: Completed Assembly (1 of 5)                            |     |
| Figure 29: Completed Assembly (2 of 5)                            |     |
| Figure 30: Completed Assembly (3 of 5)                            |     |
| Figure 31: Completed Assembly (4 of 5)                            |     |
| Figure 32: Completed Assembly (5 of 5)                            | .47 |
| Figure 33: MAR Cover Glass Specification                          | .48 |



## **Summary Specification**

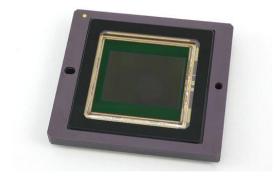
## KAC-12040 Image Sensor

#### DESCRIPTION

The KAC-12040 Image Sensor is a high-speed 12 megapixel CMOS image sensor in a 4/3" optical format based on a 4.7 µm 5T CMOS platform. The image sensor features very fast frame rate, excellent NIR sensitivity, and flexible readout modes with multiple regions of interest (ROI). The readout architecture enables use of 8, 4, or 2 LVDS output banks for full resolution readout of 70 frames per second.

Each LVDS output bank consists of up to 8 differential pairs operating at 160 MHz DDR for a 320 Mbps data rate per pair. The pixel architecture allows rolling shutter operation for motion capture with optimized dynamic range or global shutter for precise still image capture.

The image sensor has a pre-configured QFHD (4 x 1080p, 16:9) video mode, fully programmable, multiple ROI for windowing, programmable sub-sampling, and reverse readout (flip and mirror). The two ADCs can be configured for 8-bit, 10-bit, 12-bit or 14-bit conversion and output.


Additional features include interspersed video streams (dual-video), on-chip responsivity calibration, black clamping, overflow pixel for blooming reduction, blacksun correction (anti-eclipse), column and row noise correction, and integrated timing generation with SPI control, 4:1 and 9:1 averaging decimation modes.

#### **F**EATURES

- Global shutter and rolling shutter
- Very fast frame rate
- High NIR sensitivity
- Multiple regions of interest
- Interspersed video streams

#### **APPLICATIONS**

- Machine Vision
- Intelligent Transportation Systems
- Surveillance



| Parameter                                            | Typical Value                                                                      |
|------------------------------------------------------|------------------------------------------------------------------------------------|
| Architecture                                         | 5T Global Shutter CMOS                                                             |
| Resolution                                           | 12 megapixels                                                                      |
| Aspect Ratio                                         | 4:3                                                                                |
| Pixel Size                                           | 4.7 μm (H) x 4.7 μm (V)                                                            |
| Total Number of Pixels                               | 4224 (H) x 3192 (V)                                                                |
| Number of Effective Pixels                           | 4016 (H) x 3016 (V)                                                                |
| Number of Active Pixels                              | 4000 (H) x 3000 (V)                                                                |
| Active Image Size                                    | 18.8 mm (H) x 14.1 mm (V)<br>23.5 mm (diag.), 4/3" optical format                  |
| Master Clock Input Speed                             | 5 MHz to 50 MHz                                                                    |
| Maximum Pixel Clock Speed                            | 160 MHz DDR LVDS, 320 Mbps                                                         |
| Number of LVDS Outputs                               | 64 differential pairs                                                              |
| Number of Output Banks                               | 8, 4, ог 2                                                                         |
| Frame Rate, 12 MP                                    | 1 - 70 fps 10 bits<br>1 - 75 fps 8 bits                                            |
| Charge Capacity                                      | 16,000 electrons                                                                   |
| Quantum Efficiency<br>KAC-12040-CBA<br>KAC-12040-ABA | 40%, 47%, 45% (470, 540, 620 nm)<br>53%, 15%, 10% (500, 850, 900 nm)               |
| Read Noise<br>(at maximum LVDS clock)                | 3.7 e <sup>-</sup> rms, Rolling Shutter<br>25.5 e <sup>-</sup> rms, Global Shutter |
| Dynamic Range                                        | 73 dB, Rolling Shutter<br>56 dB, Global Shutter                                    |
| Blooming Suppression                                 | >10,000x                                                                           |
| Image Lag                                            | 1.3 electron                                                                       |
| Digital Core Supply                                  | 2.0 V                                                                              |
| Analog Core Supply                                   | 1.8 V                                                                              |
| Pixel Supply                                         | 2.8 V & 3.5 V                                                                      |
| Power Consumption                                    | 1.5 W for 12 Mp @ 70 fps 10 bits                                                   |
| Package                                              | 267 pin ceramic micro-PGA                                                          |
| Cover Glass                                          | AR Coated, 2-sides                                                                 |

All parameters are specified at T = 40 °C unless otherwise noted



# **Ordering Information**

## KAC-12040 IMAGE SENSOR

| Catalog<br>Number                                                                                                                                       | Product Name                                                                                                                                           | Description                                                                                                                     | Marking Code  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| 4H2227                                                                                                                                                  | KAC-12040-ABA-JD-AA Monochrome, micro-PGA Package,<br>Sealed Clear Cover Glass with AR coating(both sides), Standard Grade                             |                                                                                                                                 | KAC-12040-ABA |  |
| 4H2229 (1)         KAC-12040-ABA-JD-AE         Monochrome, micro-PGA Package,<br>Sealed Clear Cover Glass with AR coating(both sides), Engineering Grad |                                                                                                                                                        | Monochrome, micro-PGA Package,<br>Sealed Clear Cover Glass with AR coating(both sides), Engineering Grade                       | Serial Number |  |
| 4H2231                                                                                                                                                  | KAC-12040-CBA-JD-AA       Bayer (RGB) Color Filter Pattern, micro-PGA Package,<br>Sealed Clear Cover Glass with AR coating(both sides), Standard Grade |                                                                                                                                 | КАС-12040-СВА |  |
| 4H2233 (1) KAC-12040-CBA-JD-AE                                                                                                                          |                                                                                                                                                        | Bayer (RGB) Color Filter Pattern, micro-PGA Package,<br>Sealed Clear Cover Glass with AR coating(both sides), Engineering Grade | Serial Number |  |

Notes:

1. Engineering Grade samples might not meet final production testing limits, especially for cosmetic defects such as clusters, but also possibly column and row artifacts. Overall performance is representative of final production parts.

## **EVALUATION SUPPORT**

| Catalog<br>Number | Product Name            | Description                                                                                       |
|-------------------|-------------------------|---------------------------------------------------------------------------------------------------|
| 4H2290            | KEK-4H2290-KAC-12040-CB | Evaluation Hardware for KAC-12040 Image Sensor (color). Includes Image Sensor.                    |
| 4H2291            | KEK-4H2291-KAC-12040-AB | Evaluation Hardware for KAC-12040 Image Sensor (monochrome). Includes Image Sensor.               |
| 4H2211            | Lens Mount Kit          | Lens Mount Kit that supports C, CS, and F mount lenses. Includes IR cut-filter for color imaging. |

See Application Note Product Naming Convention for a full description of the naming convention used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at www.truesenseimaging.com.

Please address all inquiries and purchase orders to:

Truesense Imaging, Inc. 1964 Lake Avenue Rochester, New York 14615

Phone: (585) 784-5500 E-mail: <u>info@truesenseimaging.com</u>

ON Semiconductor reserves the right to change any information contained herein without notice. All information furnished by ON Semiconductor is believed to be accurate.



## **Device Description**

### ARCHITECTURE

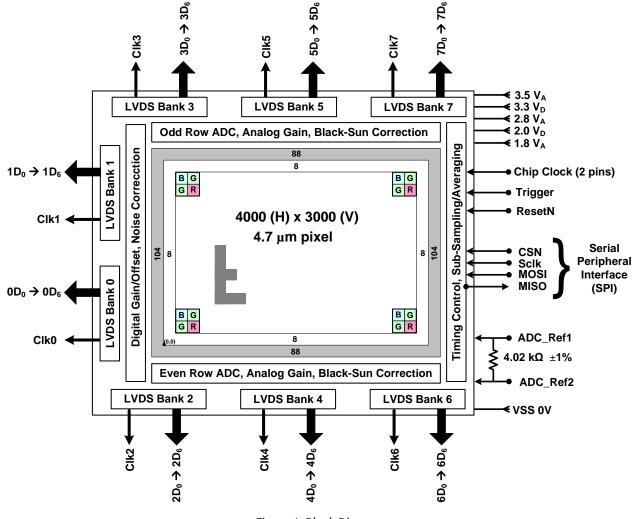



Figure 1: Block Diagram



#### **PHYSICAL ORIENTATION**



Figure 2: Package Pin Orientation – Top x-ray view

#### Notes:

- 1. The center of the pixel array is aligned to the physical package center.
- 2. The region under the sensor die is clear of pins enabling the use of a heat sink.
- 3. Non-symmetric mounting holes provide orientation and mounting precision.
- 4. Non-symmetric pins prevent incorrect placement in PCB.
- 5. Letter "F" indicator shows default readout direction relative to package pin 1



#### **PRIMARY PIN DESCRIPTION**

| Pin  | Name     | Туре | Description                                      |
|------|----------|------|--------------------------------------------------|
| AB09 | RESETN   | DI   | Sensor reset (0 V = Reset State)                 |
| E07  | CLK_In1  | DI   | Sensor Input Clk_In1 (45 – 50 MHz)               |
| D08  | CLK_In2  | DI   | Sensor Input Clk_In2 (connect to Clk1)           |
| AB08 | TRIGGER  | DI   | Trigger input (optional)                         |
| AA05 | SCLK     | DI   | SPI Master Clock                                 |
| AA08 | MOSI     | DI   | SPI Master Output Slave Input                    |
| AA07 | MISO     | DO   | SPI Master Input, Slave Output                   |
| AA06 | CSN      | DI   | SPI Chip Select (0 V = Selected)                 |
| AA14 | ADC_Ref1 | AO   | 4.02 k $\Omega$ ±1% resistor between Ref1 & Ref2 |
| AA15 | ADC_Ref2 | AO   | 4.02 k $\Omega$ ±1% resistor between Ref1 & Ref2 |
| AB07 | MSO      | DO   | Mechanical Shutter output sync (optional)        |
| AB06 | FLO      | DO   | Flash output sync (optional)                     |
| E05  | FEN      | DO   | Frame ENable reference output (optional)         |
| E06  | LEN      | DO   | Line ENable reference output (optional)          |

Notes:

- 1. DI = Digital Input, DO = Digital Output, AO = Analog Output
- 2. Tie unused DI pins to Ground, NC unused DO pins
- 3. By default Clk\_In2 should equal Clk\_In1 and should be the same source clock.
- 4. The RESETN pin has a 62 k $\Omega$  internal pull-up resistor, so if left floating the chip will not be in reset mode.
- 5. The TRIGGER pin has an internal 100 kΩ pull down resistor. If left floating (and at default polarity) then the sensor state will not be affected by this pin (ie defaults to 'not triggered' mode if floated)
- 6. All of the DI and DO pins nominally operate at  $0 V \rightarrow 2.0 V$  and are associated with the VDD\_DIG power supply.

| Name       | Voltage | Pins                                                                                                                                                                                                                 | Description                                                                                                     |
|------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| VDD_LVDS   | 3.3V D  | C04, C05, C23, C24, D04, D24, E04, E24, AA04, AA24, AB04, AB24, AC04, AC05, AC23, AC24                                                                                                                               | LVDS output supply                                                                                              |
| VDD_DIG    | 2.0V D  | C18, C19, D18, D19, E18, AA18, AB18, AB19, AC18, AC19, C20, C21, C22, D20, D21, D22, D23, E20, E21, E22, AA20, AA21, AA22, AB20, AB21, AB22, AB23, AC20, AC21, AC22, AB15, E08                                       | Digital core supply                                                                                             |
| AVDD_HV    | 3.5V A  | C11, D11, E11, AA11, AB11, AC11, C10, D10, E10, AA10, AB10, AC10                                                                                                                                                     | Pixel supply 1                                                                                                  |
| Vref_P     | 2.8V A  | C13, D13, E13, AA13, AB13, AC13                                                                                                                                                                                      | Pixel supply 2                                                                                                  |
| AVDD_LV    | 1.8V A  | C17, D16, D17, E17, AA17, AB16, AB17, AC17                                                                                                                                                                           | Analog low voltage supply                                                                                       |
| Vpixel_low | 0 V     | E09                                                                                                                                                                                                                  | Pixel Supply 3. Combine with VSS for<br>normal operation. Can be pulsed for<br>Extended Dynamic Range Operation |
| VSS        | 0 V     | C12, C14, D12, D14, E12, AA12, AB12, AB14, AC12, AC14, E15, D15, AA09, A02, A14, A26, B14, C03, C06, C25, D03, D25, E03, E19, E23, E25, AA03, AA19, AA23, AA25, AB03, AB25, AC03, AC06, AC25, AD14, AE02, AE14, AE26 | Sensor ground reference                                                                                         |
| No Connect | NA      | A01, AC09, E14, E16, C09, D09, D05, D06, D07, AA16, AB05                                                                                                                                                             | Unused and test-only pins. These pins must be floated.                                                          |

## **Power Pin Description**



## LVDS PIN DESCRIPTION

| Pin | Name    | Descr       | Pin | Name    | Descr       |
|-----|---------|-------------|-----|---------|-------------|
| E01 | 1DCLK+  | Bank 1 LVDS | C07 | 3DCLK+  | Bank 3 LVDS |
| E02 | 1DCLK-  | Clock       | C08 | 3DCLK-  | Clock       |
| D01 | 1DATA0+ |             | A07 | 3DATA0+ |             |
| D02 | 1DATA0- |             | B07 | 3DATA0- |             |
| C01 | 1DATA1+ |             | A08 | 3DATA1+ |             |
| C02 | 1DATA1- |             | B08 | 3DATA1- |             |
| B01 | 1DATA2+ | Bank 1 LVDS | A09 | 3DATA2+ |             |
| B02 | 1DATA2- |             | B09 | 3DATA2- |             |
| A03 | 1DATA3+ |             | A10 | 3DATA3+ | Bank 3 LVDS |
| B03 | 1DATA3- | Data        | B10 | 3DATA3- | Data        |
| A04 | 1DATA4+ |             | A11 | 3DATA4+ |             |
| B04 | 1DATA4- |             | B11 | 3DATA4- |             |
| A05 | 1DATA5+ |             | A12 | 3DATA5+ |             |
| B05 | 1DATA5- |             | B12 | 3DATA5- |             |
| A06 | 1DATA6+ |             | A13 | 3DATA6+ |             |
| B06 | 1DATA6- |             | B13 | 3DATA6- |             |

| Pin | Name    | Descr       |
|-----|---------|-------------|
| C15 | 5DCLK+  | Bank 5 LVDS |
| C16 | 5DCLK-  | Clock       |
| A15 | 5DATA0+ |             |
| B15 | 5DATA0- |             |
| A16 | 5DATA1+ |             |
| B16 | 5DATA1- |             |
| A17 | 5DATA2+ |             |
| B17 | 5DATA2- |             |
| A18 | 5DATA3+ | Bank 5 LVDS |
| B18 | 5DATA3- | Data        |
| A19 | 5DATA4+ |             |
| B19 | 5DATA4- |             |
| A20 | 5DATA5+ |             |
| B20 | 5DATA5- |             |
| A21 | 5DATA6+ |             |
| B21 | 5DATA6- |             |

| Pin | Name    | Descr       |
|-----|---------|-------------|
| A22 | 7DCLK+  | Bank 7 LVDS |
| B22 | 7DCLK-  | Clock       |
| A23 | 7DATA0+ |             |
| B23 | 7DATA0- |             |
| A24 | 7DATA1+ |             |
| B24 | 7DATA1- |             |
| A25 | 7DATA2+ |             |
| B25 | 7DATA2- |             |
| B27 | 7DATA3+ | Bank 7 LVDS |
| B26 | 7DATA3- | Data        |
| C27 | 7DATA4+ |             |
| C26 | 7DATA4- |             |
| D27 | 7DATA5+ |             |
| D26 | 7DATA5- |             |
| E27 | 7DATA6+ |             |
| E26 | 7DATA6- |             |

Descr Bank 6 LVDS Clock

Bank 6 LVDS Data

| Pin  | Name    | Descr               |      | Pin     | Name    | Descr       | Pin  |
|------|---------|---------------------|------|---------|---------|-------------|------|
| AA01 | 0DCLK+  | Bank 0 LVDS         |      | AC07    | 2DCLK+  | Bank 2 LVDS | AC15 |
| AA02 | 0DCLK-  | Clock               |      | AC08    | 2DCLK-  | Clock       | AC16 |
| AB01 | 0DATA0+ |                     |      | AE07    | 2DATA0+ |             | AE15 |
| AB02 | 0DATA0- |                     |      | AD07    | 2DATA0- |             | AD15 |
| AC01 | 0DATA1+ |                     |      | AE08    | 2DATA1+ |             | AE16 |
| AC02 | 0DATA1- | Bank 0 LVDS<br>Data |      | AD08    | 2DATA1- |             | AD16 |
| AD01 | 0DATA2+ |                     |      | AE09    | 2DATA2+ |             | AE17 |
| AD02 | 0DATA2- |                     |      | AD09    | 2DATA2- |             | AD17 |
| AE03 | 0DATA3+ |                     |      | AE10    | 2DATA3+ | Bank 2 LVDS | AE18 |
| AD03 | 0DATA3- |                     |      | AD10    | 2DATA3- | Data        | AD18 |
| AE04 | 0DATA4+ |                     |      | AE11    | 2DATA4+ |             | AE19 |
| AD04 | 0DATA4- |                     |      | AD11    | 2DATA4- |             | AD19 |
| AE05 | 0DATA5+ |                     |      | AE12    | 2DATA5+ |             | AE20 |
| AD05 | 0DATA5- |                     |      | AD12    | 2DATA5- |             | AD20 |
| AE06 | 0DATA6+ |                     | AE13 | 2DATA6+ |         | AE21        |      |
| AD06 | 0DATA6- |                     |      | AD13    | 2DATA6- |             | AD21 |

| Pin  | Name    | Descr       | Pin  | N  |
|------|---------|-------------|------|----|
| AC15 | 4DCLK+  | Bank 4 LVDS | AE22 | 6  |
| AC16 | 4DCLK-  | Clock       | AD22 | 6  |
| AE15 | 4DATA0+ |             | AE23 | 6[ |
| AD15 | 4DATA0- |             | AD23 | 6  |
| AE16 | 4DATA1+ |             | AE24 | 6[ |
| AD16 | 4DATA1- |             | AD24 | 6  |
| AE17 | 4DATA2+ |             | AE25 | 60 |
| AD17 | 4DATA2- |             | AD25 | 6[ |
| AE18 | 4DATA3+ | Bank 4 LVDS | AD26 | 60 |
| AD18 | 4DATA3- | Data        | AD27 | 6[ |
| AE19 | 4DATA4+ |             | AC26 | 6D |
| AD19 | 4DATA4- |             | AC27 | 6D |
| AE20 | 4DATA5+ |             | AB26 | 6D |
| AD20 | 4DATA5- |             | AB27 | 60 |
| AE21 | 4DATA6+ |             | AA26 | 6D |
| AD21 | 4DATA6- |             | AA27 | 6D |

#### Notes:

- 1. All LVDS Data and Clock lines must be routed with 100  $\Omega$  differential transmission line traces.
- 2. All the traces for a single LVDS Bank should be the same physical length to minimize skew between the clock and data lines.
- 3. In 2 Bank mode, only LVDS banks 0 and 1 are active.
- 4. In 4 Bank mode, only LVDS bank 0, 1, 2, and 3 are active.
- 5. Float the pins of unused LVDS Banks to conserve power.
- 6. Unused pins in active banks (due to ADC bit depth <14) are automatically tri-stated to save power, but these can also be floated.



# Imaging Performance

## **TYPICAL OPERATION CONDITIONS**

Unless otherwise noted, the Imaging Performance Specifications are measured using the following conditions.

| Description      | Condition                                                          | Notes |
|------------------|--------------------------------------------------------------------|-------|
| Light Source     | Continuous red, green and blue LED illumination                    | 1     |
| Temperature      | Measured die temperature: 40 °C and 27 °C                          |       |
| Integration Time | 16.6 msec (1400d LL, register 0201h)                               |       |
| Readout Mode     | Dual-Scan, Global Shutter, 320 MHz PLL2                            |       |
| Clamps           | Column/Row Noise Correction active, Frame Black Level Clamp active |       |
| ADC Bit Depth    | 10 bit                                                             |       |
| Analog Gain      | Unity gain or referred back to unity gain.                         |       |
|                  |                                                                    |       |

Notes:

1. For monochrome sensor, only green LED used.

## **PERFORMANCE SPECIFICATIONS ALL CONFIGURATIONS**

| Description                                                      | Symbol   | Min. | Nom.              | Max. | Units                         | Sampling<br>Plan | Temperature<br>Tested At (°C) | Test | Notes  |
|------------------------------------------------------------------|----------|------|-------------------|------|-------------------------------|------------------|-------------------------------|------|--------|
| Photodiode Charge Capacity                                       | PNe      | -    | 16                | -    | ke <sup>-</sup>               | Die              | 27, 40                        | 16   |        |
| Read Noise                                                       | ne-T     | -    | 3.7 RS<br>25.5 GS | -    | e <sup>-</sup> rms            | Die              | 27                            | 8    |        |
| Total Pixelized Noise                                            |          | -    | 4.5 RS<br>28.3 GS | -    | e <sup>-</sup> rms            | Die              | 27                            | 19   |        |
| Dynamic Range                                                    | DR       | -    | 73 RS<br>56 GS    | -    | dB                            | Die              | 27                            |      | 3      |
| Column Noise                                                     | Cn       | -    | 0.6 RS<br>3.0 GS  | -    | eīrms                         | Die              | 27                            | 9    | 5      |
| Row Noise                                                        | Rn       | -    | 1.0 RS<br>5.0 GS  | -    | e <sup>-</sup> rms            | Die              | 27                            | 10   | 6      |
| Dark Field Local Non-Uniformity Floor                            | DSNU_flr | -    | 3.0 RS<br>21 GS   | -    | e <sup>-</sup> rms            | Die              | 27 & 40                       | 1    | 4      |
| Bright Field Global Photoresponse Non-<br>Uniformity             | PRNU_1   | -    | 1.5               | -    | %rms                          | Die              | 27, 40                        | 2    | 1      |
| Bright Field Global Peak to Peak<br>Photoresponse Non-Uniformity | PRNU_2   | -    | 6.5               | -    | %рр                           | Die              | 27, 40                        | 3    | 1      |
| Maximum Photoresponse Nonlinearity                               | NL       | -    | 6.3               | -    | %                             | Die              | 27, 40                        | 11   | 2      |
| Maximum Gain Difference Between<br>Outputs                       | ΔG       | -    | 0.3               | -    | %                             | Die              | 27, 40                        | 12   | 7      |
| Photodiode Dark Current                                          | Ipd      | -    | 4.6               | 70   | e/p/s                         | Die              | 40                            | 13   | 8      |
| Storage Node Dark Current                                        | Ivd      | -    | 1200              | 5000 | e/p/s                         | Die              | 40                            | 14   | 4      |
| Image Lag                                                        | Lag      | -    | 1.3               | 10   | e                             | Design           | 27, 40                        | 15   |        |
| Black-Sun Anti-Blooming                                          | Xab      | -    | 12<br>>10,000     | -    | W/cm <sup>2</sup><br>xIlumSat | Design           | 27                            | 7    | 13     |
| Parasitic Light Sensitivity                                      | PLS      | -    | 730               | -    | -                             | Design           | 27                            | 6    | 9      |
| Dual-Video WDR                                                   |          | -    | 140 RS<br>120 GS  | -    | dB                            | Design           | 27                            |      | 10, 11 |
| Pulsed Pixel WDR (GS only)                                       |          | -    | 100               | -    | dB                            | Design           | 27                            |      | 12, 11 |

RS = Rolling Shutter operation mode, GS = Global Shutter operation mode



## KAC-12040-ABA Configuration (Monochrome)

| Description             |                       | Symbol            | Wavelength<br>(nm) | Min. | Nom.           | Max | Units                      | Sampling<br>Plan | Temperature<br>Tested At (°C) | Test |
|-------------------------|-----------------------|-------------------|--------------------|------|----------------|-----|----------------------------|------------------|-------------------------------|------|
| Peak Quantum Efficiency | Green<br>NIR1<br>NIR2 | QE <sub>max</sub> | 550<br>850<br>900  | -    | 53<br>15<br>10 | -   | %                          | Design           | 27                            |      |
| Responsivity            |                       |                   |                    | -    | 84             | -   | ke <sup>-</sup><br>Lux * s | Design           | 27                            | 20   |
| Responsivity            |                       |                   |                    | -    | 7.0            | -   | $\frac{V}{Lux * s}$        | Design           | 27                            | 21   |

## KAC-12040-CBA Configuration (Bayer RGB)

| Description             |                       | Symbol            | Wavelength<br>(nm)              | Min. | Nom.                       | Max | Units                  | Sampling<br>Plan | Temperature<br>Tested At (°C) | Test |
|-------------------------|-----------------------|-------------------|---------------------------------|------|----------------------------|-----|------------------------|------------------|-------------------------------|------|
| Peak Quantum Efficiency | Green<br>NIR1<br>NIR2 | QE <sub>max</sub> | 470<br>540<br>620<br>850<br>900 | -    | 40<br>47<br>45<br>15<br>10 | -   | %                      | Design           | 27                            |      |
| Responsivity            |                       |                   | Blue<br>Green<br>Red            | -    | 17<br>35<br>38             | -   | $\frac{ke^-}{Lux * s}$ | Design           | 27                            | 20   |
| Responsivity            |                       |                   | Blue<br>Green<br>Red            | -    | 1.4<br>2.9<br>3.2          | -   | $\frac{V}{Lux * s}$    | Design           | 27                            | 21   |

#### Notes:

- 1. Measured per color, worst of all colors reported
- 2. Value is over the range of 10% to 90% of photodiode saturation, Green response used.
- 3. Uses 20LOG(PNe/ ne-T)
- 4. Photodiode dark current made negligible
- 5. Column Noise Correction active
- 6. Row Noise Correction active
- 7. Measured at ~70% illumination
- 8. Storage node dark current made negligible
- 9. GSE (Global Shutter Efficiency) = 1-1/PLS
- 10. Min vs Max integration time at 30 fps
- 11. WDR measures expanded exposure latitude from linear mode DR
- 12. Min/Max responsivity in a 30 fps image
- 13. Saturation Illumination referenced to a 3 line time integration.



# **Typical Performance Curves**

## **QUANTUM EFFICIENCY**

#### Monochrome with Microlens

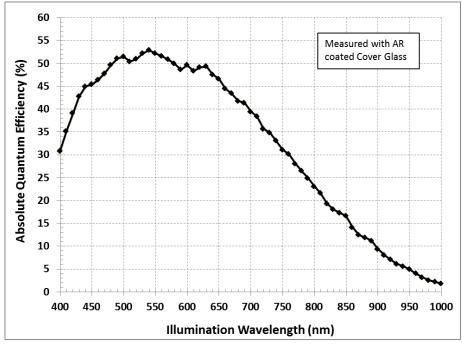



Figure 3: Monochrome QE (with Microlens)

## Color (Bayer RGB) with Microlens

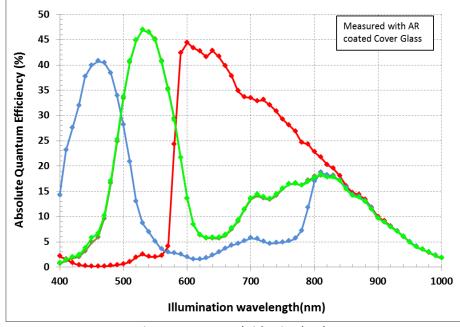



Figure 4: Bayer QE (with Microlens)



## **ANGULAR QUANTUM EFFICIENCY**

For the curves marked "Horizontal", the incident light angle is varied along the wider array dimension.

For the curves marked "Vertical", the incident light angle is varied along the shorter array dimension.

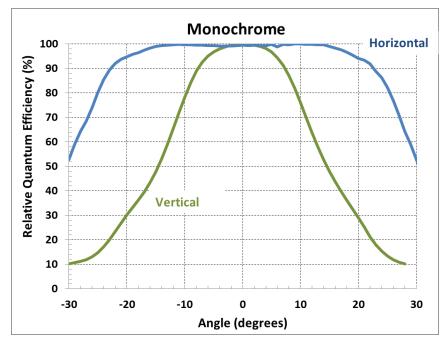



Figure 5: Monochrome Relative Angular QE (with Microlens)

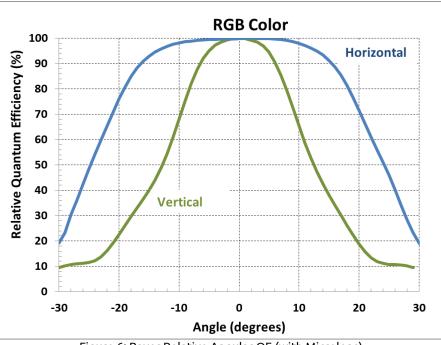



Figure 6: Bayer Relative Angular QE (with Microlens)



## **DARK CURRENT VERSUS TEMPERATURE**

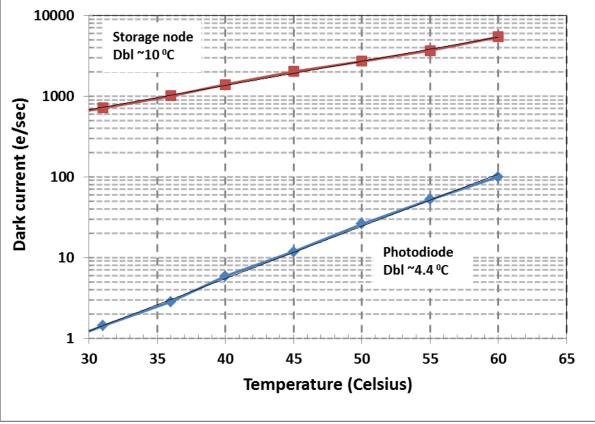



Figure 7: Dark Current vs Temperature

Note: "Dbl" denotes an approximate doubling temperature for the dark current for the displayed temperature range.



## **POWER VS FRAME RATE**

The most effective method to use the maximum PLL2 speed (313 -> 320 MHz) and control frame rate with minimum Power and maximum image quality is to adjust Vertical Blanking. (register 01F1h). Unnecessary chip operations are suspended during Vertical Blanking conserving significant power consumption and also minimizing the image storage time on the storage node when in Global Shutter Operation.

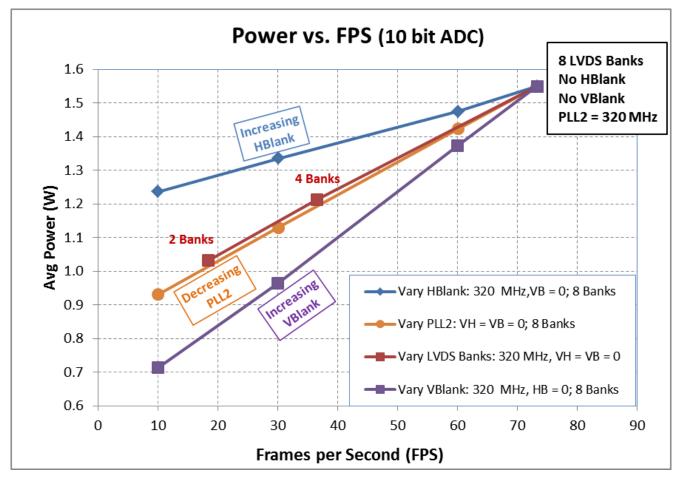



Figure 8: Power vs Frame Rate, 10 bit mode

#### Notes:

1. The LVDS clock is ½ the PLL2 clock speed



#### Power and Frame Rate vs ADC Bit depth

Increasing the ADC bit depth impacts the frame rate by changing the ADC conversion time. The following figure shows the power and Frame rate range for several typical cases.

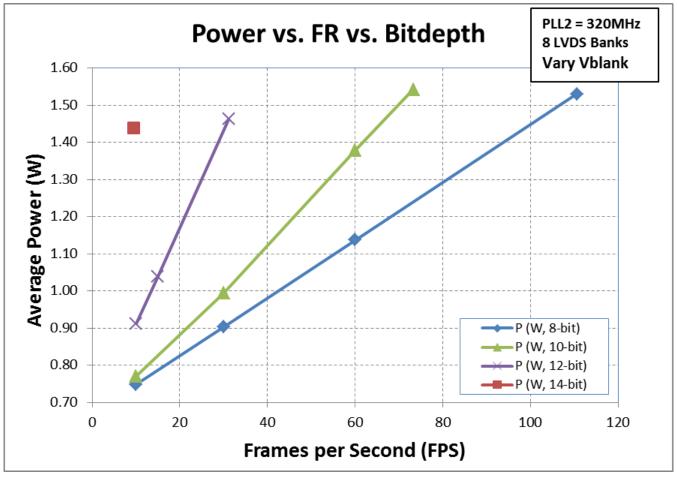



Figure 9: ADC Bit Depth impact on Frame Rate and Power



## **Defect Definitions**

## **OPERATION CONDITIONS FOR DEFECT TESTING**

| Description                 | Condition                                                                                                                                                                 | Notes |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Operational Mode            | 10 bit ADC, 8 LVDS outputs, Global Shutter and Rolling Shutter modes, Dual-Scan, Black<br>Level Clamp on, Column/Row Noise Correction on, 1x Analog Gain, 1x Digital Gain |       |
| Pixels Per Line             | 4000                                                                                                                                                                      |       |
| Lines Per Frame             | 3000                                                                                                                                                                      |       |
| Line Time                   | 8.7 µsec                                                                                                                                                                  |       |
| Frame Time                  | 13.9 msec                                                                                                                                                                 |       |
| Photodiode Integration Time | 33 msec                                                                                                                                                                   |       |
| Storage Readout Time        | 13.9 msec                                                                                                                                                                 |       |
| Temperature                 | 40 °C and 29 °C                                                                                                                                                           |       |
| Light Source                | Continuous red, green and blue LED illumination                                                                                                                           | 1     |
| Operation                   | Nominal operating voltages and timing, PLL1 = 320 MHz, PLL2 = 320 MHz, Wafer Test                                                                                         |       |

Notes:

1. For monochrome sensor, only the green LED is used.

## **DEFECT DEFINITIONS FOR TESTING**

| Description                          | Definition                                                        | Limit                               | Test | Notes |      |
|--------------------------------------|-------------------------------------------------------------------|-------------------------------------|------|-------|------|
| Dark Field Defective Pixel           | 30 °C<br>RS: Defect ≥ 20 dn<br>GS: Defect ≥ 180 dn                | 120                                 | 4    | 3, 4  |      |
| Bright Field Defective Pixel         | Defect ≥ ±12% from local mean                                     |                                     |      | 5     | 1, 4 |
| Cluster Defect                       | A group of 2 to 10 contiguous de<br>adjacent defects horizontally | fective pixels, but no more than 3  | 22   |       | 2    |
| Column/Row Major Defect              | A group of more than 10 contigu<br>column or row                  | ous defective pixels along a single | 0    |       |      |
| Dark Field Faint Column/Row Defect   | RS: 3 dn threshold<br>GS: 10 dn threshold                         | 0                                   | 17   |       |      |
| Bright Field Faint Column/Row Defect | RS: 12 dn threshold<br>GS: 18 dn threshold                        | 0                                   | 18   |       |      |

Notes:

RS = Rolling Shutter, GS = Global Shutter

- 1. For the color devices, all bright defects are defined within a single color plane, each color plane is tested
- 2. Cluster defects are separated by no less than two good pixels in any direction.
- 3. Rolling Shutter Dark Field points are dominated by photodiode integration time, Global Shutter Dark Field defects are dominated by the readout time.
- 4. The net sum of all bright and dark field pixel defects in rolling and global shutter are combined and then compared to the test limit

## **DEFECT MAP**

The defect map supplied with each sensor is based upon testing at an ambient (29 °C) temperature. All defective pixels are reference to pixel (0, 0) in the defect maps. See Figure 10 for the location of pixel (0, 0).

#### KAC-12040 Image Sensor

### **ON Semiconductor®**



## **Test Definitions**

### **TEST REGIONS OF INTEREST**

| Image Area ROI: | Pixel (0, 0) to Pixel (4015, 3015) |
|-----------------|------------------------------------|
|-----------------|------------------------------------|

Active Area ROI: Pixel (8, 8) to Pixel (3999, 2999)

Center ROI: Pixel (1958, 1458) to Pixel (2057, 1557)

Only the Active Area ROI pixels are used for performance and defect tests.

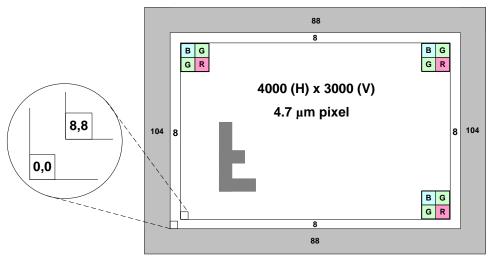



Figure 10: Regions of Interest

## **TEST DESCRIPTIONS**

### 1) Dark Field Local Non-Uniformity Floor (DSNU\_flr)

This test is performed under dark field conditions. A 4 frame average image is collected. This image is partitioned into 300 sub-regions of interest, each of which is 200 by 200 pixels in size. For each sub-region the standard deviation of all its pixels is calculated. The dark field local non-uniformity is the largest standard deviation found from all the sub regions of interest. Units: e<sup>-</sup> rms (electrons rms)

### 2) Bright Field Global Photoresponse Non-Uniformity (PRNU\_1)

The sensor illuminated to 70% of saturation (~700 dn). In this condition a 4 frame average image is collected. From this 4 frame average image a 4 frame average dark image is subtracted. The Active Area Standard Deviation is the standard deviation of the resultant image and the Active Area Signal is the average of the resultant image.

$$PRNU_1 = 100 * \left( \frac{Active Area Standard Deviation}{Active Area Signal} \right)$$
 Units: %rms

www.truesenseimaging.com



## 3) Bright Field Global Peak to Peak Non-Uniformity (PRNU\_2)

This test is performed with the sensor uniformly illuminated to 70% of saturation (~700 dn), a 4 frame average image is collected and a 4 frame averaged dark image is subtracted. The resultant image is partitioned into 300 sub regions of interest, each of which is 200 by 200 pixels in size. The average signal level of each sub regions of interest (sub-ROI) is calculated.

The highest sub-ROI average (Maximum Signal) and the lowest sub-ROI average (Minimum Signal) are then used in the following formula to calculate PRNU\_2.

 $PRNU_2 = 100 * \frac{Maximum Signal - Minimum Signal}{Active Area Signal} \qquad Units: %pp$ 

## 4) Dark Field Defect Test

This test is performed under dark field conditions. The sensor is partitioned into 300 sub regions of interest, each of which is 128 by 128 pixels in size. In each region of interest, the median value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the defect threshold specified in the Defect Definition Table section.

## 5) Bright Field Defect Test

This test is performed with the imager illuminated to a level such that the output is at approximately 700 dn. The average signal level of all active pixels is found. The bright and dark thresholds are set as:

Dark defect threshold = Active Area Signal \* threshold

Bright defect threshold = Active Area Signal \* threshold

The sensor is then partitioned into 300 sub regions of interest, each of which is 128 by 128 pixels in size. In each region of interest, the average value of all pixels is found. For each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the bright threshold specified or if it is less than or equal to the median value of that region of interest minus the dark threshold specified.

Example for bright field defective pixels:

- Average value of all active pixels is found to be 700 dn
- Lower defect threshold: 700 dn \* 12 % = 84 dn
- A specific 128 x 128 ROI is selected:
  - Median of this region of interest is found to be 690 dn.
  - Any pixel in this region of interest that is  $\leq$  (690 84 dn) in intensity will be marked defective.
  - Any pixel in this region of interest that is  $\geq$  (690 84 dn) in intensity will be marked defective
- All remaining 299 sub regions of interest are analyzed for defective pixels in the same manner.



#### 6) Parasitic Light Sensitivity (PLS)

Parasitic Light Sensitivity is the ratio of the light sensitivity of the photodiode to the light sensitivity of the storage node in Global Shutter. There is no equivalent distortion in Rolling Shutter. A low PLS value can provide distortion of the image on the storage node by the scene during readout.

 $PLS = \frac{Photodiode \ Responsivity}{Storage \ Node \ Responsivity} \qquad (unitless \ ratio)$ 

GSE (Global Shutter Efficiency) is a related unit.  $GSE = \left(1 - \frac{1}{PLS}\right) \%$ 

Detailed method: Photodiode Responsivity:

The sensor is set in global shutter serial mode (integration time not overlapping readout) and the FLO signal is used to control a 550 nm normal incident (or large f# focused) illumination source so that the sensor is illuminated only during photodiode integration time (not illuminated during readout time). The integration time is not critical but should be large enough to create a measurable mean during this time. A 16 frame-average illuminated photodiode image is recorded. A 16 frame-average dark frame using the same sensor settings is captured and is subtracted from the illuminated image.

Detailed method: Storage Node Responsivity:

The sensor is set to a special characterization mode where the PD signal is discarded and does not impact the storage node. A long total frame time (storage node exposure time) is used to increase the storage node signal. A 16 frame-average dark frame is captured. The sensor is illuminated by the same 550nm incident light source used for the photodiode responsivity. A 16 frame-average illuminated photodiode image is recorded; the dark frame image is subtracted from this. The integration time is not critical but should be set such that a significant response is detected, typically several orders of magnitude greater than the photodiode integration time.

#### 7) Black-Sun Anti-blooming

A typical CMOS image sensor has a light response profile that goes from 0 dn to saturation (1023 dn for KAC-12040 in 10 bit ADC mode) and, with enough light, back to 0 dn. The sensor reaching 0 dn at very bright illumination is often called the "Black-sun" artifact and is undesirable. Black-sun artifact is typically the dominant form of anti-blooming image distortion. For the KAC-12040 the Black-sun artifact threshold is measured at the onset of saturation distortion, not at the point where the output goes to 0 dn. To first order the onset of black-sun artifact for the KAC-12040 is not proportional to the integration time or readout time.

The sensor is placed in the dark at unity gain and illuminated with a 532 nm laser with the intensity of about 26 W/cm<sup>2</sup> at the center of the sensor. The laser is strong enough to make the center of the laser spot below 1020 dn without any ND filters. ND filters are added to adjust the laser intensity until the signal in the region at the center of the spot increases to >1020 dn.

This illumination intensity at this ND filter is recorded (W/cm<sup>2</sup>) as the Black-Sun Anti-blooming. The 'xIlumSat' unit is calculated using and integration time of 100 µsec.

Exposing the sensor to very strong illumination for extended periods of time will permanently alter the sensor performance in that localized region.



#### 8) Read Noise

This test is performed with no illumination and one line of integration time. The read noise is defined as one standard deviation of the frequency histogram containing the values of all pixels after the excessively deviant pixels (± three standard deviations) are removed.

#### 9) Column Noise

After all rows are averaged together. Shading (low frequency change wrt column address) is removed. A frequency histogram is constructed of the resulting column values. The column noise is the standard deviation of the frequency histogram of the column values.

#### 10) Row Noise

All columns are averaged together. Shading (low frequency change wrt row address) is removed. A frequency histogram is constructed of the resulting row values. The row noise is the standard deviation of the frequency histogram of the row values.

#### 11) Maximum Photoresponse Non-Linearity

The photoresponse nonlinearity is defined as the deviation from the best fit of the sensor response using 70% of saturation and zero signal as the reference points. The different signal levels are determined by varying the integration time. The sensor saturation level is (1023-dark offset). The dark offset is subtracted from the image for the following Mavg and Lavg.

- The integration time is varied until the integration time required to reach the 70% saturation is determined. Mavg = the active array mean at the 70% saturation integration time.
- The integration is set to 1/14 (5% exposure point). Lavg = meant at the 5% exposure point
- PRNL (@ 5% saturation) =( (Lavg/Mavg) \* (14/1) -1) \* 100

#### 12) Maximum Gain Difference Between Outputs

The sensor contains two ADC and four channels of analog data in its highest frame rate configuration. The sensor is factory calibrated to reduce the gain differences between the channels. The gain variations are manifest as a row oriented pattern where every other row uses a different ADC. Using triple scan read out mode, an additional two analog channels are introduced resulting in a four row pattern. With one channel ('Top Ping') used as the reference, the residual gain difference is defined as:

( (Bottom Ping Row Average/Top Ping Row Average) -1 ) \* 100

((Top Pong Row Average/Top Ping Row Average) -1) \* 100

( (Bottom Pong Row Average/Top Ping Row Average) -1 ) \* 100



#### 13) Photodiode Dark Current

The photodiode dark current is measured in rolling shutter read out mode using 105 msec integration time and an analog gain = 8. The value is converted to electrons/pix/sec using the formula:

Photodiode dark current = average signal (DN) \* el-per-DN (gain=8) / .105 seconds

where 'average signal (DN)' is the average of all pixels in the sensor array, and 'el-per-DN(gain=8)' is measured on each sensor using the photon transfer method.

#### 14) Storage Node Dark Current

The storage node dark current is measured in global shutter read out mode using a special timing mode to prevent the photodiode dark current from being transferred to the storage node. In global shutter mode, the integration time of the storage node is the time it takes to read out a frame. The sensor analog gain is set to 2:

Storage node dark current = average signal (DN) \* el-per-DN (gain=2) / .0138 seconds

where 'average signal (DN)' is the average of all pixels in the sensor array and 'el-per-DN(gain=2)' is measured on each sensor using the photon transfer method.

#### 15) Lag

Lag is measured as the number of electrons left in the photodiode after readout when the sensor is illuminated at 70% of Photodiode Charge Capacity.

Analog gain is set to 8. With no illumination a 64 average dark image is recorded (Dark\_ref). The 'el-per-DN' is measured using the photon transfer method.

Illumination is adjusted blink every other frame such that the mean image output is 70% of the Photodiode Charge Capacity for even frames, and with no illumination for odd frames. A 64 frame average of Odd Dark Frames is recorded as Dark\_Lag.

Lag = (Dark\_Lag - Dark\_Ref) \* el-per-DN' Units: electrons rms

#### 16) Photodiode Charge Capacity

The sensor analog gain is reduced to <1 to prevent ADC clipping at 1023 dn. The 'el-per-DN' is measured using the photon transfer method. The sensor is illuminated at a light level ~1.5x the illumination at which the pixel output no longer linearly changes with illumination level. The Photodiode Charge Capacity is equal to the average signal (DN) \* el-per-DN. Units: electrons rms.

#### 17) Dark Field Faint Column/Row Defect

A 4 frame average, no illumination image is acquired at one line time of integration. Major defective pixels are removed (> 5 Sigma). All columns or rows are averaged together. The average of the local ROI of 128 columns or rows about the column/row being tested is determined. Any columns/rows greater than the local average by more than the threshold are identified.



#### 18) Bright Field Faint Column/Row Defect

A 4 frame average, 70% illumination image is acquired at one line time of integration. Major defective pixels are removed (> 5 Sigma). All columns or rows are averaged together. The average of the local ROI of 128 columns or rows about the column/row being tested is determined. Any columns/rows greater than the local average by more than the threshold are identified.

#### 19) Total Pixelized Noise

This test is performed with no illumination and one line of integration time. A single image is captured including both Temporal and Fixed Pattern Noise (FPN). A spatial low pass filter is applied to remove shading and deviant pixels (± three standard deviations) are removed. The Total Pixelized Noise is defined as one standard deviation of the frequency histogram.

#### 20) Responsivity ke/lux-sec

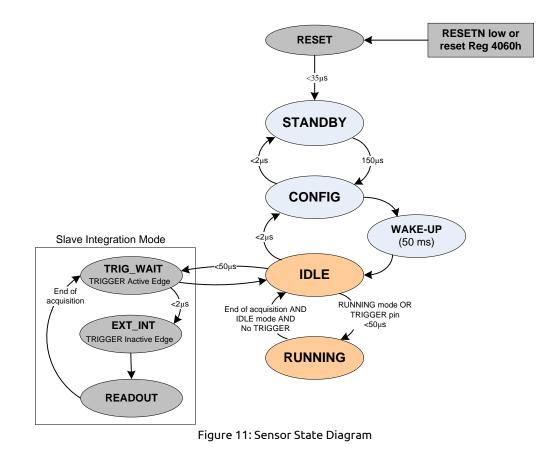
This number is calculated by integrating the multiplication of the sensor QE by the human photopic response assuming a 3200K light source with a QT100 IR filter. This is a sharp 650nm cutoff filter. If the IR filter is removed a higher response value will result.

#### 21) Responsivity V/lux-sec

Voltage levels are not output from the sensor. This metric uses the pixel output in volts at the ADC input for 1x Analog Gain.



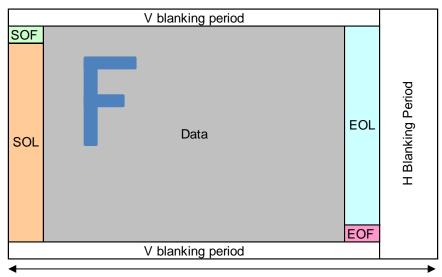
## Operation


This section is a brief discussion of the most common features and functions assuming default conditions. See the *KAC-12040 User Guide* for a full explanation of the sensor operation modes, options, and registers.

## **REGISTER ADDRESSES**

The last bit of any register address is a Read/Write bit. Most references in this document refer to the Write address. All SPI reads are to an even address, all SPI writes are to an odd address.

## **SENSOR STATES**


Figure 11 shows the sensor states, see the *KAC-12040 User Guide* for detailed explanation of the States.





## **ENCODED SYNCS**

To facilitate system acquisition synchronization the KAC-12040 places synchronization words (SW) at the beginning and at the end of each output row as indicated in the following Figure 12. This is performed for each of the 8 LVDS output banks providing frame, line, and output synchronization. See the *KAC-12040 User Guide* for additional detail on LVDS and Encoded Sync output.



Line length (LL) Figure 12: Encoded Frame Syncs



## LINE TIME

This Datasheet presumes the recommended startup script that is defined in the *KAC-12040 User Guide* has been applied. The KAC-12040 defaults to Dual-Scan mode. In this mode the LVDS data readout overlaps the pixel readout and ADC conversion time. The Pixel and ADC conversion time are fixed (for 10 bit operation) and total ~ 8.66 µsec. The LVDS time will be dependent on the PLL2 frequency selected. If the PLL2 < 313 MHz, then the LVDS data readout will dominate the row time. For PLL2 > 313 MHz, the Pixel + ADC will set the minimum Line Time. The Line Time is not impacted by the selection of Rolling Shutter or Global Shutter mode.

The KAC-12040 architecture always outputs two rows at once, one row from the top ADC, and one from the bottom ADC. Each ADC then divides up the pixel into  $1 \rightarrow 4$  parallel pixel output LVDS Banks. The default is 4 output banks per ADC for a total of 8 parallel pixel outputs to minimize the LVDS data output time. Since the sensor always outputs 2 rows at a time the timing and registers are based on a Line Time (LT) or Line Length (LL) where one LT = the time to readout 2 rows in parallel (one even row and one odd row).

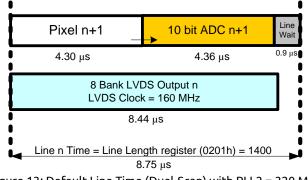



Figure 13: Default Line Time (Dual-Scan) with PLL2 = 320 MHz



## **FRAME TIME**

The frame time is defined in units of Line Time. 1 Line Time unit = 2 output rows. To first-order the frame rate is not directly impacted by selection of Global Shutter, Rolling Shutter, Dual-Scan, or Tri-Scan.

The Frame Time is made up of three phases:

- 1. Integration Phase
- 2. Readout Phase
- 3. Frame Wait Phase (Vertical Blanking, Vblank)

By default the Integration Phase overlaps the Readout and Frame Wait Phases. If the Integration Phase is larger than the Readout + Frame Wait time, then the Integration Phase will determine the video frame rate. Otherwise the frame rate will be set by the Readout + Frame Wait time. In other words, if the programmed integration time is larger than the minimum readout time (and vertical blanking) then extra vertical blanking will be added and the frame rate will slow to accommodate the requested integration time.

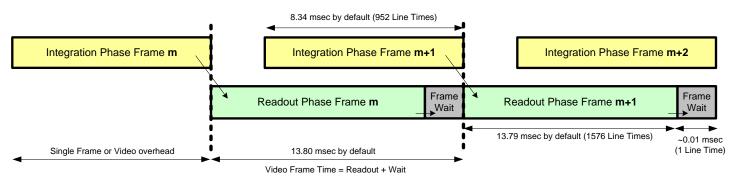



Figure 14: Default frame time configuration (Frame A)

If the Integration Phase is less than the Readout Phase then the start of integration is automatically delayed to minimize the storage time and dark current.

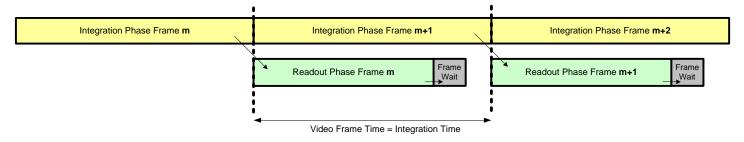



Figure 15: Frame time with extended integration time.

If the Readout Phase(+ Vblanking) is less than the Integration Phase, then the readout occurs as soon the integration is complete to minimize the storage time and dark current.

See the *KAC-12040 User Guide* for detailed calculation of the Integration Phase, Readout Phase, and Frame Wait.

To first-order the Readout Phase is equal to the number of rows \* row\_time.



## **GLOBAL SHUTTER READOUT**

Global Shutter readout provides the maximum precision for freezing scene motion. Any motion artifacts will be 100% defined by an ideal integration time edge. Every pixel in the array starts and stops integration at the same time.

Figure 16 illustrates a Global Shutter Frame readout assuming the recommended Start-up Script defined in the *KAC-12040 User Guide* (8 LVDS banks, Dual-Scan, 8.75 µSec line time). The Frame Wait Phase is not shown due to its small default size (1 LL) and for clarity.

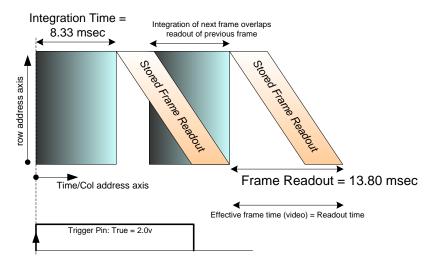



Figure 16: Illustration of frame time for Global Shutter readout

Global Shutter readout mode is selected using Bits [1:0] of Register 01D1h.

Images can be initiated by setting and holding the TRIGGER input pin or by placing the sensor into RUNNING mode by writing 03d to register 4019h. If the TRIGGER input pin is true when at the start of the integration time for the next frame then the sensor will complete an additional frame integration and readout. In the case shown in Figure 16 two frames will be output.



## **ROLLING SHUTTER READOUT**

The KAC-12040 high speed Rolling Shutter readout provides the maximum dynamic range while still providing excellent motion capture. In Rolling Shutter the readout more closely matches a film camera shutter. Each row of the image receives the same integration time, but each row starts and ends at a different time as the shutter travels from the top of the array to the bottom. In the Figure 17 frame time illustration this 'moving shutter' displays as a sloped edge for the blue pixel array region, just as the readout edge is sloped.

The Figure 17 illustration shows a 2 frame output sequence using the external TRIGGER pin.

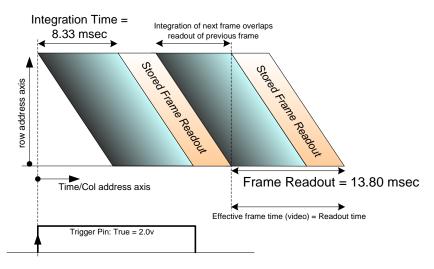



Figure 17: Illustration of Frame time for Rolling Shutter readout

Rolling Readout mode can be selected using Bits [1:0] of Register 01D1h.

Images can be initiated by setting and holding the TRIGGER input pin or by placing the sensor into RUNNING mode by writing 03d to register 4019h. If the TRIGGER input pin is True when at the start of the integration time for the next frame then the sensor will complete an additional frame integration and readout.



## 8 Bank LVDS Data Readout

## **LVDS BANKS**

The KAC-12040 provides 8 parallel pixel banks, each consisting of 8 LVDS differential pairs (7 data pairs + 1clock pair). This allows the output of 8 pixels per LVDS clock period. All 7 data pairs, of each bank, are used only in 14 bit operation mode. By default only 5 data pairs are used for 10 bit mode (D4 -> D0). The unused pairs are held in low-power high impedance mode.

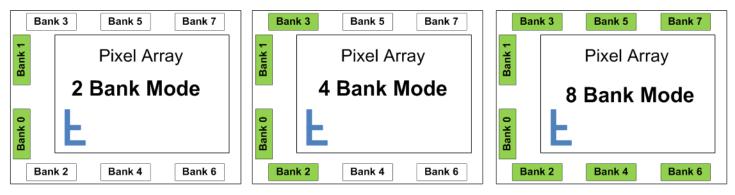



Figure 18: LVDS Bank labeling

The number of output banks used is independent of the ADC bit depth chosen. By default the KAC-12040 uses all 8 output banks for maximum frame rate. If technical restrictions prevent the use of 8 LVDS banks, the sensor can be programmed to use 4 or 2 banks, however this can result in reduced frame rate and reduction of image quality. It is recommended that 8 banks be used when possible. Only the 8 bank option is discussed in detail in this specification, see the *KAC-12040 User Guide* for additional detail on 4 and 2 bank mode.

In order to minimize the LVDS clock rate (and power) for a given data rate the pixels are output in DDR (Double Data Rate) where the MSB is always sent first (on rising edge) and the LSB second (falling edge) This is not programmable.

### PORTS PER LVDS BANK

The MSB comes out first on the falling edge, followed by the LSB on the net rising edge.

| Bit Depth | Edge of DATA_CLK     | Data0 | Data1 | Data2 | Data3 | Data4 | Data5 | Data6 |
|-----------|----------------------|-------|-------|-------|-------|-------|-------|-------|
| 14 bits   | Falling (MSB nibble) | D7    | D8    | D9    | D10   | D11   | D12   | D13   |
|           | Rising (LSB nibble)  | D0    | D1    | D2    | D3    | D4    | D5    | D6    |
| 12 bits   | Falling (MSB nibble) | D6    | D7    | D8    | D9    | D10   | D11   | HiZ   |
| 12 DILS   | Rising (LSB nibble)  | D0    | D1    | D2    | D3    | D4    | D5    | HiZ   |
| 10 bits   | Falling (MSB nibble) | D5    | D6    | D7    | D8    | D9    | HiZ   | HiZ   |
| TODICS    | Rising (LSB nibble)  | D0    | D1    | D2    | D3    | D4    | HiZ   | HiZ   |
| 8 bits    | Falling (MSB nibble) | D4    | D5    | D6    | D7    | HiZ   | HiZ   | HiZ   |
| o DILS    | Rising (LSB nibble)  | D0    | D1    | D2    | D3    | HiZ   | HiZ   | HiZ   |

Figure 19: Number of LVDS pairs (ports) used vs. bit depth



## **8 BANK PIXEL ORDER**

The KAC-12040 always processes two rows at a time. Even row decodes are sent to the bottom ADC and LVDS output banks (0, 2, 4, 6). Odd rows are sent to the top ADC and LVDS banks (1, 3, 5, 7). The ROI must be (and is internally forced to) an even size and always starting on an even row decode.

The rows are read out progressively left to right (small column address to large). Eight pixels are sent out of the chip at once, one pixel per LVDS bank per LVDS clock cycle.

Pixel Readout order:

- 1. Two rows are selected, the even row is sent to the bottom ADC and the odd row to the top ADC.
- 2. Each ADC converts its row of pixel data at once and stores the result in a line buffer.
- 3. At default settings there are 4 output LVDS banks for each ADC.
- 4. Each LVDS Bank outputs one pixel per clock cycle, so 4 pixels of each row are output each full LVDS clock cycle, two rows in parallel for 8 pixels per clock cycle total.
- 5. The pixels are sent out from left to right (low column number to high column number). So the first 4 pixels are sent out on clock cycle 1, and the next 4 pixels to the right are sent out on clock cycle 2.
- 6. To conserve the number of wires per port, the 10 bits per pixel are sent out DDR (Dual Data Rate) over 5 ports. On the falling edge the upper 5 MSB bits are sent out, and on the rising edge the lower 5 bits LSB are sent out. Completing one full LVDS clock cycle and one set of eight pixels.

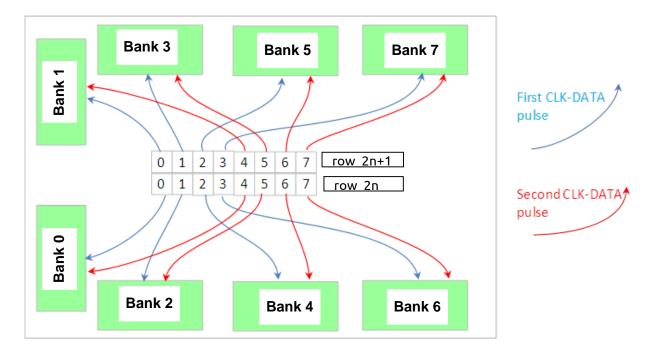



Figure 20: Pixel readout order diagram



| LVDS Bank | Row              | Pixel number |   |    |    |    |  |  |  |  |  |  |
|-----------|------------------|--------------|---|----|----|----|--|--|--|--|--|--|
| Bank 0    | 2 n (even)       | 0            | 4 | 8  | 12 | 16 |  |  |  |  |  |  |
| Bank 2    | 2 n (even)       | 1            | 5 | 9  | 13 | 17 |  |  |  |  |  |  |
| Bank 4    | 2 n (even)       | 2            | 6 | 10 | 14 | 18 |  |  |  |  |  |  |
| Bank 6    | 2 n (even)       | 3            | 7 | 11 | 15 | 19 |  |  |  |  |  |  |
| Bank 1    | 2 n+1 (odd)      | 0            | 4 | 8  | 12 | 16 |  |  |  |  |  |  |
| Bank 3    | 2 n+1 (odd)      | 1            | 5 | 9  | 13 | 17 |  |  |  |  |  |  |
| Bank 5    | 2 n+1 (odd)      | 2            | 6 | 10 | 14 | 18 |  |  |  |  |  |  |
| Bank 7    | 2 n+1 (odd)      | 3            | 7 | 11 | 15 | 19 |  |  |  |  |  |  |
|           | LVDS Clock Cycle | 1            | 2 | 3  | 4  | 5  |  |  |  |  |  |  |

Figure 21: Pixel readout order table

## **De-Serializer Settings**

Figure 22 shows the data stream of one LVDS bank for 10 bit resolution.

Data serialization is fixed at 2 cycle DDR for all bit depths. Data output order is MSB first on the falling edge, and LSB following on the rising edge.

Four pixel values per synchronization word are embedded into the video stream per LVDS bank.

The SOL/SOF synchronization words are sent out of each LVDS bank before the first valid pixel data from that bank. Each bank outputs all 4 syncs of the SOF or SOL.

And each of the active LVDS banks each output all 4 sync codes for the EOL/EOF.

| Dc1k0 | Ţ                               |     | Ţ   |     | Ţ                   |            |     | ſ   | Ţ   |           | Ţ             | ſ   | Ţ   | ſ      | Ţ       |                    | Ļ |  | Ţ   |            | Ţ   |     | Ţ     |            | Ţ   |        | Ţ      |       | Ţ   |     |
|-------|---------------------------------|-----|-----|-----|---------------------|------------|-----|-----|-----|-----------|---------------|-----|-----|--------|---------|--------------------|---|--|-----|------------|-----|-----|-------|------------|-----|--------|--------|-------|-----|-----|
| Data0 | D5                              | D0  | D5  | D0  | D5                  | <b>D</b> 0 | D5  | D0  | D5  | <b>D0</b> | D5            | DO  | D5  | DO     | D5      | D0                 |   |  | D5  | <b>D</b> 0 | D5  | DO  | D5    | <b>D</b> 0 | D5  | D0     | D5     | D0    | D5  | DO  |
| Data1 | D6                              | D1  | D6  | D1  | D6                  | D1         | D6  | D1  | D6  | D1        | D6            | D1  | D6  | D1     | D6      | D1                 |   |  | D6  | D1         | D6  | D1  | D6    | D1         | D6  | D1     | D6     | D1    | D6  | D1  |
| Data2 | D7                              | D2  | D7  | D2  | D7                  | D2         | D7  | D2  | D7  | D2        | D7            | D2  | D7  | D2     | D7      | D2                 |   |  | D7  | D2         | D7  | D2  | D7    | D2         | D7  | D2     | D7     | D2    | D7  | D2  |
| Data3 | D8                              | D3  | D8  | D3  | D8                  | D3         | D8  | D3  | D8  | D3        | D8            | D3  | D8  | D3     | D8      | D3                 |   |  | D8  | D3         | D8  | D3  | D8    | D3         | D8  | D3     | D8     | D3    | D8  | D3  |
| Data4 | D9                              | D4  | D9  | D4  | D9                  | D4         | D9  | D4  | D9  | D4        | D9            | D4  | D9  | D4     | D9      | D4                 |   |  | D9  | D4         | D9  | D4  | D9    | D4         | D9  | D4     | D9     | D4    | D9  | D4  |
|       | MSB                             | LSB | MSB | LSB | MSB                 | LSB        | MSB | LSB | MSB | LSB       | MSB           | LSB | MSB | LSB    | MSE     | B LSB              |   |  | MSB | LSB        | MSB | LSB | MSB   | LSB        | MSB | LSB    | MSB    | S LSB | MSB | LSB |
|       | SW1 SW2                         |     |     |     | 1 SW2 SW3 SW4 P0 P1 |            |     |     |     | F         | P2 P3 PN-1 PN |     |     |        |         | PN SW1 SW2 SW3 SW4 |   |  |     | W4         |     |     |       |            |     |        |        |       |     |     |
|       |                                 |     |     |     |                     |            |     |     |     |           |               |     | _   | ~      | -       |                    |   |  |     | $\nearrow$ |     |     |       | _          |     |        |        |       |     |     |
|       | Synchronisation word on 10 bits |     |     |     |                     |            |     |     |     |           |               |     | Dat | a'on 1 | 10 bits |                    |   |  |     |            |     | Syn | chror | nisatio    | n w | ord or | n 10 t | bits  |     |     |

Figure 22: Data stream of one LVDS Bank for 10bits ADC resolution



# **Register Definition**

| 16 bit<br>Write<br>addr<br>(Hex) | Default<br>Value<br>Hex/Dec | SPI State | Group      | Register Name              | 16 bit<br>Write<br>addr<br>(Hex) | Default<br>Value<br>Hex/Dec | SPI State      | Description                |
|----------------------------------|-----------------------------|-----------|------------|----------------------------|----------------------------------|-----------------------------|----------------|----------------------------|
| 0001                             | 420d                        |           |            | Frame A ROI y1             | 01D1                             | CC11h                       | CONFIG only    | Config1                    |
| 0009                             | 2176d                       |           |            | Frame A ROI h1             | 01D9                             | 0000h                       | CONFIG or IDLE | Config2                    |
| 0011                             | 80d                         |           |            | Frame A ROI x1             | 01E1                             | 000Ah                       | CONFIG or IDLE | Analog/Digital Power Mode  |
| 0019                             | 3856d                       |           |            | Frame A ROI w1             | 01E9                             | 0000h                       | CONFIG or IDLE | Dual-Video Repetition      |
| 0021                             | 0d                          |           |            | Frame A sub-ROI y2         | 01F1                             | b0                          | CONFIG or IDLE | Vertical Blanking          |
| 0029                             | 0d                          |           |            | Frame A sub-ROI h2         | 01F9                             | 1938d                       | CONFIG or IDLE | Fixed Frame Period         |
| 0031                             | 0d                          |           |            | Frame A sub-ROI x2         | 0201                             | 1376d                       | CONFIG or IDLE | Line Length (LL)           |
| 0039                             | 0d                          |           |            | Frame A sub-ROI w2         | 0209                             | 0028h                       | CONFIG or IDLE | ADC Bit Depth              |
| 0041                             | 0d                          |           | по         | Frame A sub-ROI y3         | 0211                             | 0000h                       | CONFIG or IDLE | FLO Edge                   |
| 0049                             | 0d                          |           | Definition | Frame A sub-ROI h3         | 0219                             | 0000h                       | CONFIG or IDLE | MSO Edge                   |
| 0051                             | 0d                          | Any       | Defi       | Frame A sub-ROI x3         | 0709                             | 0000h                       | Any            | CFA Feedback               |
| 0059                             | b0                          | A         | <          | Frame A sub-ROI w3         | 0711                             | 0000h                       | Any            | Temperature Sensor FB      |
| 0061                             | 0d                          |           | Frame      | Frame A sub-ROI y4         | 0719                             | 0000h                       | Any            | General Feedback           |
| 0069                             | b0                          |           | Fr         | Frame A sub-ROI h4         | 2059                             | 0300h                       | CONFIG only    | Output Bank Select 1       |
| 0071                             | 0d                          |           |            | Frame A sub-ROI x4         | 2099                             | 2877h                       | CONFIG only    | PLL1 Setting               |
| 0079                             | b0                          |           |            | Frame A sub-ROI w4         | 20A1                             | 0861h                       | CONFIG only    | PLL2 Setting               |
| 0081                             | 0033h                       |           |            | Frame A Decimation         | 2449                             | 0432h                       | CONFIG only    | Sub-LVDS Enable            |
| 0089                             | b0                          |           |            | Frame A Video Blanking     | 2479                             | 10ABh                       | Any            | Column Clamp Threshold A   |
| 0091                             | 800d                        |           |            | Frame A Integration Lines  | 2481                             | 20C7h                       | Any            | Column Clamp Threshold B   |
| 0099                             | 0d                          |           |            | Frame A Integration Clocks | 2499                             | 0011h                       | CONFIG or IDLE | Test Pattern Control 1     |
| 00A1                             | 10d                         |           |            | Frame A Black Level        | 24A1                             | 0220h                       | CONFIG or IDLE | Test Pattern Control 2     |
| 00A9                             | 001Fh                       |           |            | Frame A Gain               | 24B9                             | 202d                        | STANDBY only   | Slope 1 Length             |
| 00E9                             | 0d                          |           |            | Frame B ROI y1             | 24C1                             | 101d                        | STANDBY only   | Slope 2 Length             |
| 00F1                             | 3016d                       |           |            | Frame B ROI h1             | 24C9                             | 101d                        | STANDBY only   | Slope 3 Length             |
| 00F9                             | 0d                          |           |            | Frame B ROI x1             | 24D1                             | 101d                        | STANDBY only   | Slope 4 Length             |
| 0101                             | 4016d                       |           |            | Frame B ROI w1             | 24D9                             | 101d                        | STANDBY only   | Slope 5 Length             |
| 0109                             | 0d                          | _         |            | Frame B sub-ROI y2         | 24E1                             | 420d                        | STANDBY only   | Slope 6 Length             |
| 0111                             | 0d                          |           |            | Frame B sub-ROI h2         | 24E9                             | 0083h                       | STANDBY only   | Slope 1/2 Gain             |
| 0119                             | 0d                          |           |            | Frame B sub-ROI x2         | 24F1                             | 038Fh                       | STANDBY only   | Slope 3/4 Gain             |
| 0121                             | 0d                          |           |            | Frame B sub-ROI w2         | 24F9                             | 0FBFh                       | STANDBY only   | Slope 5/6 Gain             |
| 0129                             | 0d                          | _         | ion        | Frame B sub-ROI y3         | 2501                             | 1F9Fh                       | STANDBY only   | Slope 7 Gain               |
| 0131                             | 0d                          |           | Definition | Frame B sub-ROI h3         | 2559                             | 4804h                       | Any            | Defect Avoidance Threshold |
| 0139                             | 0d                          | Any       | Def        | Frame B sub-ROI x3         | 2561                             | 0006h                       | Any            | Defect Avoidance Enable    |
| 0141                             | 0d                          | ⊲         | e B        | Frame B sub-ROI w3         | 25C1                             | 0003h                       | CONFIG or IDLE | Encoded Sync Config        |
| 0149                             | 0d                          | _         | rame       | Frame B sub-ROI y4         | 25C9                             | 000Ah                       | CONFIG only    | LVDS Power-Down            |
| 0151                             | 0d                          |           | Fr         | Frame B sub-ROI h4         | 2619                             | 000Bh                       | CONFIG only    | Output Bank Select 2       |
| 0159                             | 0d                          | _         |            | Frame B sub-ROI x4         | 2D89                             | 0000h                       | CONFIG only    | FLO/MSO Polarity           |
| 0161                             | 0d                          |           |            | Frame B sub-ROI w4         | 4001                             | 4100h                       | Any            | Chip Revision Code         |
| 0169                             | 0033h                       | _         |            | Frame B Decimation         | 4009                             | 0011h                       | Any            | Chip ID Code MSB           |
| 0171                             | 0d                          |           |            | Frame B Video Blanking     | 4011                             | 0080h                       | Any            | Chip ID Code LSB           |
| 0179                             | 800d                        | _         |            | Frame B Integration Lines  | 4019                             | 0000h                       | Any            | Set Sensor State           |
| 0181                             | 0d                          |           |            | Frame B Integration Clocks | 4021                             | 0000h                       | CONFIG or IDLE | OTP Address                |
| 0189                             | 10d                         | _         |            | Frame B Black Level        | 4029                             | 0000h                       | CONFIG or IDLE | OTP Write Data             |
| 0191                             | 001Fh                       |           |            | Frame B Gain               | 4031                             | 0000h                       | CONFIG or IDLE | Command_Done_FB            |
|                                  |                             |           |            |                            | 4041                             | 0000h                       | CONFIG or IDLE | OTP Read Data              |
|                                  |                             |           |            |                            |                                  | 00001                       |                |                            |

4061

0000h

CONFIG or IDLE

Soft Reset



Notes - SPI State (the Sensor State from which the register can be set):

- 1. "Any": Can be written from any state (including RUNNING)
- 2. "CONFIG or IDLE": These registers can be changed in IDLE or CONFIG states
- 3. "CONFIG only": Sensor must be in CONFIG state to set these registers.
- 4. Only Register 4018h and 4060h may be set when the sensor is in STANDBY state.

Notes - Decimal, hexadecimal, binary values:

- 1. "b" denotes a binary number, a series of bits: MSB is on the left, LSB is on the right.
- 2. "h" or "hex" denotes a hexadecimal number (Base 16, 1-9, A-F). The letters in a hex number are always capitalized
- 3. "d" denotes a decimal number.
- 4. Note that "0" and "1" are the same value in all number base systems and sometimes the base notation is omitted.

The KAC-12040 features an embedded microprocessor by Cortus.

## Absolute Maximum Ratings

For Supplies and Inputs the maximum rating is defined as a level or condition that should not be exceeded at any time. If the level or the condition is exceeded, the device will be degraded and may be damaged. Operation at these values will reduce Mean Time to Failure (MTTF).

### **SUPPLIES**

| Parameter                         | Value                    |
|-----------------------------------|--------------------------|
| AVDD_LV, VDD_DIG                  | -0.25 V; 2.3 V           |
| AVDD_HV, Vref_P, VDD_LVDS         | -0.25 V; 4 V             |
| DC Input voltage at any input pin | -0.25 V; VDD_DIG +0.25 V |

## **CMOS** INPUTS

| Parameter                | Symbol | Min          | Typical | Max          | Unit |
|--------------------------|--------|--------------|---------|--------------|------|
| Input voltage low level  | VIL    | -0.3         |         | 0.35 VDD_DIG | V    |
| Input voltage high level | VIH    | 0.65 VDD_DIG |         | VDD_DIG +0.3 | V    |



## **Operating Ratings**

### **INPUT CLOCK CONDITIONS**

| Parameter                          | Min | Typical | Max | Unit |
|------------------------------------|-----|---------|-----|------|
| Frequency for Clk_In1 and Clk_In2  | 45  | 48      | 50  | MHz  |
| Duty cycle for Clk_In1 and Clk_In2 | 40  | 50      | 60  | %    |
| RESETN                             | 10  |         |     | ns   |
| TRIGGER pin minimum pulse width    | 20  |         |     | ns   |

TRIGGER must be active at least 4 periods of PLL1 (~12.5 ns at 320 MHz) to start a capture cycle. The polarity of the active level is configurable by SPI (Register 01D8h Bit 0), the default is active high (ie pin = VDD\_DIG = trigger request).

#### **OPERATING TEMPERATURE**

| Operating Temperature TOP -50 +80 °C 1 | Description           | Symbol | Minimum | Maximum | Units | Notes |
|----------------------------------------|-----------------------|--------|---------|---------|-------|-------|
|                                        | Operating Temperature | ТОР    | -50     | +80     | °C    | 1     |

Notes:

1. Under conditions of no condensation on the sensor

## **CMOS IN/OUT**

CMOS IN/OUT characteristics

| Parameter                                | Symbol          | Min          | Typical | Max  | Unit |
|------------------------------------------|-----------------|--------------|---------|------|------|
| Output voltage low level                 | Vol             |              |         | 0.45 | V    |
| Output voltage high level                | Vон             | VDD_DIG-0.45 |         |      | V    |
| Input Hysteresis voltage                 | VTH             |              | 0.25    |      |      |
| Pull-up resistor value for RESETN pin    | R <sub>PU</sub> | 62           |         |      | kΩ   |
| Pull-down resistor value for TRIGGER pin | R <sub>PD</sub> | 100          |         |      | kΩ   |
| Current on ADC_REF pin                   | IADC_REF        |              | 100     |      | μA   |



### **SUPPLIES**

| LVDS is supply         VVD LVDS         3.15         3.30         3.63         V           Pixet high voltage supply         AVDD_LVV         3.40         3.50         3.60         V           Pixet low voltage supply         Vref_P         2.71         2.80         2.88         V           Pixet low voltage supply         AVDD_LVV         1.71         1.80         1.88         V           Analog power supply         AVDD_LVV         1.71         1.80         1.88         V           Digital power supply         VDD_Dig         1.9         2.00         2.10         V           AVDD_LVV - Vref_P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parameter                      | Symbol   | Min  | Typical | Max  | Unit | Comment |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|------|---------|------|------|---------|
| Pixel low voltage supply         Vire P         2.71         2.80         V           Pixel low voltage supply         AVDD_LV         1.71         1.80         1.89         V           Digital power supply         VDD_Dig         1.9         2.00         2.10         V           Digital power supply         VDD_Dig         1.9         2.00         2.10         V           AVDD_HV - Vref P          0         0.5         V         V           Power in STANDBY State          10         mW             Current in STANDBY State          <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LVDS IO supply                 | VDD_LVDS | 3.15 | 3.30    | 3.63 | V    |         |
| Analog power supplyAVDD_LV1.711.801.89VDigital power supplyVDD_Dig1.92.002.10VDog tal power supplyI1.92.002.10VAVDD_HV-Vref_PIIIIIPower in STANDBY StateIIIMWICurrent in STANDBY StateIIIMWICurrent in STANDBY StateIIIMMICurrent in STANDBY StateIIIMMIMADD_LVDSIIIMMIIMVDD_LVDSIIIMMIIMVDD_LVDSIIIMMIIPower in CONFIG StateIIIIIICurrent in CONFIG StateIIIIIIIVDD_LVDSIIIIIIIIVDD_LVDSIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pixel high voltage supply      | AVDD_HV  | 3.40 | 3.50    | 3.60 | V    |         |
| Analog power supplyAVDD_LV1.711.801.89VDigital power supplyVDD_Dig1.92.002.10VDog tal power supplyI1.92.002.10VAVDD_HV-Vref_PIIIIIPower in STANDBY StateIIIMWICurrent in STANDBY StateIIIMWICurrent in STANDBY StateIIIMMICurrent in STANDBY StateIIIMMIMADD_LVDSIIIMMIIMVDD_LVDSIIIMMIIMVDD_LVDSIIIMMIIPower in CONFIG StateIIIIIICurrent in CONFIG StateIIIIIIIVDD_LVDSIIIIIIIIVDD_LVDSIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |      |         |      |      |         |
| Digital power supplyVDD_Dig1.92.002.10VAVDD_IV- Vief_P0.5VVPower in STANDBY State10mWCurrent in STANDBY State10mMVCurrent in STANDBY State<<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pixel low voltage supply       |          | 2.71 | 2.80    | 2.88 | V    |         |
| AVDD_HV - Vref_P0.5VDewer in STANDBY State10mWCurrent in STANDBY State10mWCurrent in STANDBY State<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analog power supply            | AVDD_LV  | 1.71 | 1.80    | 1.89 | V    |         |
| Power in STANDBY StateImage: stand | Digital power supply           | VDD_Dig  | 1.9  | 2.00    | 2.10 | V    |         |
| Current in STANDBY StateImage: stateImage: stateVDD_LVDS<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AVDD_HV – Vref_P               |          |      | 0.5     |      | V    |         |
| Current in STANDBY StateImage: stateImage: stateVDD_LVDS<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |          |      |         |      |      |         |
| VDD_LVDS<<<< </td <td>Power in STANDBY State</td> <td></td> <td></td> <td>10</td> <td></td> <td>mW</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Power in STANDBY State         |          |      | 10      |      | mW   |         |
| AVDD_HV<0.5.mAAVDD_LV<0.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Current in STANDBY State       |          |      |         |      |      |         |
| AVDD_LV </td <td>VDD_LVDS</td> <td></td> <td></td> <td>&lt; 0.5</td> <td></td> <td>mA</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VDD_LVDS                       |          |      | < 0.5   |      | mA   |         |
| Vinef_PmAVDD_DIGAmAmAPower in CONFIG State330mWCurrent in CONFIG StatemAVDD_LVDSmACurrent in CONFIG StatemAVDD_LVDSmAMUDD_HVUmAMUDD_HVUmAMUDD_HVUmAMUDD_HVUmAMUDD_DIGmAMUDD_DIGmAMUDD_DIGmAMUDD_DIGmAMUDD_DIGmAMUDD_DIGmAMurei IDLE StatemAMUDD_LVDSmAMUDD_LVDSmAMUDD_LVDSmAMUDD_LVDSmAMUDD_LVDSmAMUDD_LVDSmAMUDD_LVDSmAMUDD_LVDSmAMUDD_LVDS in standard LVDS modemAVDD_LVDS in Sub-LVDS modemAVDD_LVDS in Sub-LVDS modemAVDD_LVDS in Sub-LVDS mode </td <td>AVDD_HV</td> <td></td> <td></td> <td>&lt; 0.5</td> <td></td> <td>mA</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AVDD_HV                        |          |      | < 0.5   |      | mA   |         |
| VDD_DIGMAMAPower in CONFIG StateImage: State St                                    | AVDD_LV                        |          |      | < 0.5   |      | mA   |         |
| Power in CONFIG State         Image: Construct of the state         Image: Construct of the state         Image: Construct of the state           Current in CONFIG State         Construct of the state         Construct of the state         Construct of the state           AVDD_HV         Construct of the state         Construct of the state         Construct of the state         Construct of the state           AVDD_HV         Construct of the state         Construct of the state         Construct of the state         Construct of the state           Power in IDLE State         Construct of the state         Construct of the state         Construct of the state         Construct of the state           Current in IDLE State         Construct of the state         Construct of the state         Construct of the state         Construct of the state           Current in IDLE State         Construct of the state         Construct of the state         Construct of the state         Construct of the state           Current in IDLE State         Construct of the state         Construct of the state         Construct of the state         Construct of the state           Current in RUNNING State         Construct of the state         Construct of the state         Construct of the state         Construct of the state           VDD_LVDS in standard LVDS mode         Construct of the state         Constate         Construct of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vref_P                         |          |      | < 0.5   |      | mA   |         |
| Current in CONFIG StateImage: stateImage: stateImage: stateVDD_LVDSImage: stateImage: stateImage: stateImage: stateAVDD_LVImage: stateImage: stateImage: stateImage: stateAVDD_LDGImage: stateImage: stateImage: stateImage: stateVDD_LDGImage: stateImage: stateImage: stateImage: statePower in IDLE StateImage: state <td< td=""><td>VDD_DIG</td><td></td><td></td><td>4</td><td></td><td>mA</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VDD_DIG                        |          |      | 4       |      | mA   |         |
| Current in CONFIG StateImage: stateImage: stateImage: stateVDD_LVDSImage: stateImage: stateImage: stateImage: stateAVDD_LVImage: stateImage: stateImage: stateImage: stateAVDD_LDGImage: stateImage: stateImage: stateImage: stateVDD_LDGImage: stateImage: stateImage: stateImage: statePower in IDLE StateImage: state <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |          |      |         |      |      |         |
| VDD_LVDS<<<mAAVDD_HV<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Power in CONFIG State          |          |      | 330     |      | mW   |         |
| AVDD_HV<<MAAVDD_LV<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Current in CONFIG State        |          |      |         |      |      |         |
| AVDD_LV<<0.5mAVref_P<0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VDD_LVDS                       |          |      | < 0.5   |      | mA   |         |
| Vref_P </td <td>AVDD_HV</td> <td></td> <td></td> <td>&lt; 0.5</td> <td></td> <td>mA</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AVDD_HV                        |          |      | < 0.5   |      | mA   |         |
| VDD_DIG145mAPower in IDLE StateImage: State Sta                                    | AVDD_LV                        |          |      | < 0.5   |      | mA   |         |
| Image: system         Image: s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vref_P                         |          |      | < 0.5   |      | mA   |         |
| Current in IDLE StateImage: stateImage: stateImage: stateVDD_LVDSImage: state< 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VDD_DIG                        |          |      | 145     |      | mA   |         |
| Current in IDLE StateImage: stateImage: stateImage: stateVDD_LVDSImage: state< 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |          |      |         |      |      |         |
| VDD_LVDS<<MAAVDD_HV20mAAVDD_LV<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Power in IDLE State            |          |      | 410     |      | mW   |         |
| AVDD_HV20mAAVDD_LV<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Current in IDLE State          |          |      |         |      |      |         |
| AVDD_LV<<<mAVref_P<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VDD_LVDS                       |          |      | < 0.5   |      | mA   |         |
| Vref_PMAMAVDD_DIGIma145MAVDD_DIGImaImaImaPower in RUNNING StateImaImaImaCurrent in RUNNING StateImaImaImaVDD_LVDS in standard LVDS modeImaImaImaVDD_LVDS in Sub-LVDS modeImaImaImaImage: NVDD_LVDS in Sub-LVDS modeImaImaImaImage: NVD_LVDS in Sub-LVDS modeImaImaImaImage: NVD_LVD Image: NVD_LVD Image: NVD_LVDImage: NVDImage: NVDImage: NVD_LVD Image: NVDE_LVDImaImaImaImage: NVDE_LVD Image: NVDE_LVDImage: NVDE_LVDImage: NVDE_LVDImage: NVDE_LVDImage: NVDE_LVD Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVDD_HV                        |          |      | 20      |      | mA   |         |
| VDD_DIGImage: stateMAPower in RUNNING StateImage: stateImage: stateImage: stateCurrent in RUNNING StateImage: stateImage: stateImage: stateVDD_LVDS in standard LVDS modeImage: stateImage: stateImage: stateVDD_LVDS in Sub-LVDS modeImage: stateImage: stateImage: stateVDD_LVDS in Sub-LVDS modeImage: stateImage: stateImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AVDD_LV                        |          |      | < 0.5   |      | mA   |         |
| VDD_DIGImage: stateMAPower in RUNNING StateImage: stateImage: stateImage: stateCurrent in RUNNING StateImage: stateImage: stateImage: stateVDD_LVDS in standard LVDS modeImage: stateImage: stateImage: stateVDD_LVDS in Sub-LVDS modeImage: stateImage: stateImage: stateVDD_LVDS in Sub-LVDS modeImage: stateImage: stateImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vref_P                         |          |      | < 0.5   |      | mA   |         |
| Current in RUNNING State         Image: mark standard LVDS mode         Image: mark standard LVDS mode         Image: mark standard LVDS mode         Image: mark standard standard LVDS mode         Image: mark standard stan                                           | 1                              |          |      | 145     |      | mA   |         |
| Current in RUNNING State         Image: mark standard LVDS mode         Image: mark standard LVDS mode         Image: mark standard LVDS mode         Image: mark standard standard LVDS mode         Image: mark standard stan                                           |                                |          |      |         |      |      |         |
| VDD_LVDS in standard LVDS mode         164         mA           VDD_LVDS in Sub-LVDS mode         104         mA           AVDD_HV         74         mA           AVDD_LV         12         mA           Vref_P         26         mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Power in RUNNING State         |          |      | 1.5     |      | W    |         |
| VDD_LVDS in Sub-LVDS mode         104         mA           AVDD_HV         74         mA           AVDD_LV         12         mA           Vref_P         26         mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Current in RUNNING State       |          |      |         |      |      |         |
| VDD_LVDS in Sub-LVDS mode         104         mA           AVDD_HV         74         mA           AVDD_LV         12         mA           Vref_P         26         mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VDD_LVDS in standard LVDS mode |          |      | 164     |      | mA   |         |
| AVDD_LV         12         mA           Vref_P         26         mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |          |      | 104     |      | mA   |         |
| Vref_P         26         mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AVDD_HV                        |          |      | 74      |      | mA   |         |
| Vref_P         26         mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AVDD_LV                        |          |      | 12      |      | mA   |         |
| VDD_DIG 396 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          |      | 26      |      | mA   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VDD_DIG                        |          |      | 396     |      | mA   |         |

Notes:

1. Voltages relative to VSS. Current measurements made in darkness.

2. PLL2 = 320 MHz, Max frame rate (i.e., no row or frame wait time). These average power values will decrease at lower frame rate either from reduced PLL2 or low power state during Line and Frame blanking.

3. Sub-LVDS active.



# SPI (Serial Peripheral Interface)

The SPI communication interface lets the application system to control and configure the sensor. The sensor has an embedded slave SPI interface. The application system is the master of the SPI bus.

| Name | Sensor I/O<br>direction | Description                                                                          |
|------|-------------------------|--------------------------------------------------------------------------------------|
| CSN  | I                       | SPI chip select - Active low, this input activates the slave interface in the sensor |
| SCK  | I                       | SPI clock – toggled by the master                                                    |
| MISO | 0                       | SPI master serial data input – slave(sensor) serial data output                      |
| MOSI | I                       | SPI master serial data output – slave(sensor) serial data input                      |

| Parameter             | Min | Тур | Max | Unit |
|-----------------------|-----|-----|-----|------|
| SPI SCK               | 5   | 25  | 50  | MHz  |
| Duty cycle on SPI SCK | 40  | 50  | 60  | %    |

# **CLOCK POLARITY AND PHASE**

CPOL(Clock POLarity) and CPHA(Clock PHAse) are commonly defined in SPI protocol such as to define SCK clock phase and polarity. The KAC-12040 defaults to expecting the master to be configured with CPOL=1 (the base value of the clock is VDD\_DIG) and CPHA=1 (data is valid on the clock rising edge).

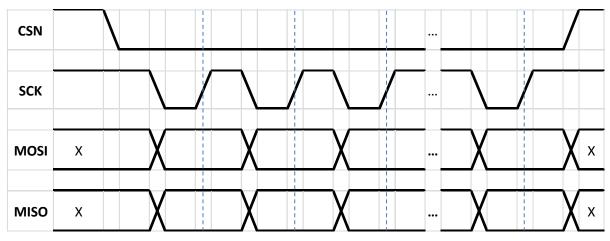



Figure 23: CPOL = 1 and CPHA = 1 configuration



## **SPI PROTOCOL**

|      | byte     | byte     | byte     | byte     |
|------|----------|----------|----------|----------|
|      | 0        | 1        | 2        | 3        |
|      |          |          |          |          |
| CSN  |          |          |          |          |
|      |          |          |          |          |
| Sclk | 8 cycles | 8 cycles | 8 cycles | 8 cycles |
|      |          |          |          |          |
|      | 16       | bit      | 16       | bit      |
| MOSI | Addres   | s word   | Data to  | o write  |
|      | MSB      | LSB      | MSB      | LSB      |

Figure 24: SPI Write byte order

|      | byte<br>0 | byte<br>1             |                       |  |                   | byte<br>2          | byte<br>3 |  |
|------|-----------|-----------------------|-----------------------|--|-------------------|--------------------|-----------|--|
| CSN  |           |                       |                       |  |                   |                    |           |  |
| Sclk | 8 cycles  | 8 cycles              |                       |  |                   | 8 cycles           | 8 cycles  |  |
| MOSI |           | bit<br>ss word<br>LSB |                       |  |                   |                    |           |  |
| MISO |           |                       | Wait time<br>1.5 usec |  | 16<br>Read<br>MSB | bit<br>data<br>LSB |           |  |

Figure 25: SPI Read byte order

There is a delay during readback between presenting the address to be read on the MOSI and being able to read the register contents on the MISO. This delay is not the same for all registers. Some are available immediately, some require a longer fetch time. The 1.5 µsec shown in Figure 14 is the maximum time to fetch a register's value when in CONFIG state (the recommended state for changing registers). Some registers can be adjusted during RUNNING state (see the register summary on page 34). If performing a readback during RUNNING state, the delay could be as long as 4.5 µsec depending on when in the row the request was sent and the sensor's microcontroller activity at that moment.

Note that readback does not provide the actual register value being used, but reflects the next value to be used. All new register writes are placed in a shadow memory until they can be updated into the active memory. This active memory update occurs at the start of the next frame or upon entering the state listed in the Register Summary table on page 34. Register reads access this shadow memory not the active memory. For instance if the sensor is in RUNNING mode and you adjust the LL in register 200h. You can read back and confirm that your register change was received by the sensor; however, the LL will not change since register 200h can only be changed in CONFIG state. If you change the sensor state to CONFIG and then back to RUNNING, then the new LL will take effect.



# **SPI** INTERFACE

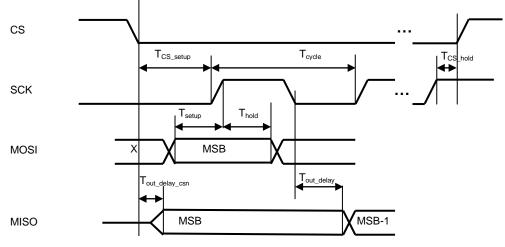



Figure 26: SPI timing chronogram

# **SPI** TIMING SPECIFICATION

| Symbol                     | Min Value | Max Value |
|----------------------------|-----------|-----------|
| T <sub>cycle</sub>         | 20 ns     | 200 ns    |
| T <sub>setup</sub>         |           | 2.9 ns    |
| Thold                      | 0.8 ns    |           |
| T <sub>cs_setup</sub>      |           | 2.5 ns    |
| T <sub>cs_hold</sub>       | 0.1 ns    |           |
| T <sub>out_delay_csn</sub> | 3.1 ns    | 4.7 ns    |
| Tout_delay                 | 4.9 ns    | 8.7 ns    |



# **LVDS Interface**

The data output can be configured to follow standard TIA/EIA-644-A LVDS specification or a low power mode compatible with common Sub-LVDS definition used in FPGA industry. (Please refer to the *KAC-12040 User Guide* for more information).

Unless otherwise noted, min/max characteristics are for T = -40 °C to +85 °C, output termination resistance RL = 100  $\Omega$  ± 1%, Typical values are at VDD\_LVDS =3.3 V.

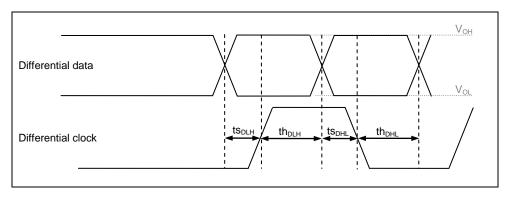
Use register 2449h to select standard or Sub-LVDS. This document assumes that Sub-LVDS is active for all power measurements. Standard LVDS can increase the average power consumption as much as 200 mW in the case of minimum horizontal and vertical blanking.

### **STANDARD LVDS CHARACTERISTICS**

| Parameter                                                                                             | Symbol | Min          | Typical | Max          | Unit |
|-------------------------------------------------------------------------------------------------------|--------|--------------|---------|--------------|------|
| Differential output voltage                                                                           | VOD    | 250          | 355     | 450          | mV   |
| VOD variation between complementary output states                                                     | ΔVOD   | -20          |         | +20          | mV   |
| Common mode output voltage                                                                            | VOCM   | 1.235        | 1.259   | 1.275        | V    |
| VOCM variation between complementary output states                                                    | Δνοςμ  | -25          |         | +25          | mV   |
| High impedance leakage current                                                                        | IOZD   | -1           |         | +1           | μA   |
| Output short circuit current:<br>when D+ or D- connected to ground<br>when D+ or D- connected to 3.3V | IOSD   | 2.9<br>12.25 |         | 4.3<br>30.47 | mA   |
| Output capacitance                                                                                    | CDO    |              | 1.3     |              | рF   |
| Maximum Transmission Capacitive Load Expected (for 260 MHz LVDS clock)                                |        |              |         | 10           | pF   |

# **SUB-LVDS** CHARACTERISTICS

| Parameter                                                                                             | Symbol            | Min          | Typical | Max          | Unit |
|-------------------------------------------------------------------------------------------------------|-------------------|--------------|---------|--------------|------|
| Differential output voltage                                                                           | Vod               | 140          | 180     | 220          | mV   |
| VOD variation between complementary output states                                                     | $\Delta V_{OD}$   | -5           |         | +5           | mV   |
| Common mode output voltage                                                                            | V <sub>OCM</sub>  | 0.88         | 0.9     | 0.92         | V    |
| VOCM variation between complementary output states                                                    | ΔV <sub>OCM</sub> | -10          |         | +10          | mV   |
| High impedance leakage current                                                                        | lozd              | -1           |         | +1           | μA   |
| Output short circuit current:<br>when D+ or D- connected to ground<br>when D+ or D- connected to 3.3V | losd              | 1.4<br>10.21 |         | 2.2<br>30.47 | mA   |
| Output capacitance                                                                                    | C <sub>DO</sub>   |              | 1.3     |              | рF   |
| Maximum Transmission Capacitive Load Expected (for 260 MHz LVDS clock)                                |                   |              |         | 10           | рF   |


| Parameter              | Min | Typical | Max | Unit |
|------------------------|-----|---------|-----|------|
| LVDS_CLK               | 50  | 160     | 160 | MHz  |
| Duty cycle on LVDS_CLK |     | 50      |     | %    |



## IN-BLOCK LVDS TIMING SPECIFICATION

The table below gives LVDS timing specification for one group of LVDS for nominal frequency of 260 MHz. There is no skew specification between groups.

| Parameter                                               | Symbol            | Value | Typical | Max | Unit |
|---------------------------------------------------------|-------------------|-------|---------|-----|------|
| Minimum time between data change and clock rising edge  | <b>ts</b> DLH     | 600   |         |     | ps   |
| Minimum time between clock rising edge and data change  | th <sub>DLH</sub> | 600   |         |     | ps   |
| Minimum time between data change and clock falling edge | <b>ts</b> DHL     | 600   |         |     | ps   |
| Minimum time between clock falling edge and data change | thdhl             | 600   |         |     | ps   |
| Maximum differential skew between the 7 data pairs      | <b>t</b> skd      |       | 200     | 700 | ps   |



#### Figure 27: LVDS timing chronogram

## INTER-BLOCK LVDS TIMING SPECIFICATION

| Parameter        | Min | Typical | Max | Unit                 |
|------------------|-----|---------|-----|----------------------|
| Inter-block skew |     | 6       | 12  | LVDS Clock<br>period |



# Storage and Handling

## **STORAGE CONDITIONS**

| Description            | Symbol | Minimum | Maximum | Units | Notes |
|------------------------|--------|---------|---------|-------|-------|
| Storage<br>Temperature | TST    | -40     | +80     | °C    | 1     |
| Humidity               | RH     | 5       | 90      | %     | 2     |

#### Notes:

- 1. Long-term storage toward the maximum temperature will accelerate color filter degradation.
- 2. T=25 °C. Excessive humidity will degrade MTTF.

# ESD

- This device contains limited protection against Electrostatic Discharge (ESD). ESD events may cause irreparable damage to an image sensor either immediately or well after the ESD event occurred. Failure to protect the sensor from electrostatic discharge may affect device performance and reliability.
- 2. Devices should be handled in accordance with strict ESD procedures. Devices are shipped in static-safe containers and should only be handled at static-safe workstations.
- 3. See Application Note *Image Sensor Handling Best Practices* for proper handling and grounding procedures. This application note also contains workplace recommendations to minimize electrostatic discharge.
- 4. Store devices in containers made of electroconductive materials.

### **COVER GLASS CARE AND CLEANLINESS**

- 1. The cover glass is highly susceptible to particles and other contamination. Perform all assembly operations in a clean environment.
- 2. Touching the cover glass must be avoided.

3. Improper cleaning of the cover glass may damage these devices. Refer to Application Note *Image Sensor Handling Best Practices*.

### **ENVIRONMENTAL EXPOSURE**

- Extremely bright light can potentially harm image sensors. Do not expose to strong sunlight for long periods of time, as the color filters and/or microlenses may become discolored. In addition, long time exposures to a static high contrast scene should be avoided. Localized changes in response may occur from color filter/microlens aging.
- 2. Exposure to temperatures exceeding maximum specified levels should be avoided for storage and operation, as device performance and reliability may be affected.
- 3. Avoid sudden temperature changes.
- 4. Exposure to excessive humidity may affect device characteristics and may alter device performance and reliability, and therefore should be avoided.
- 5. Avoid storage of the product in the presence of dust or corrosive agents or gases, as deterioration of lead solderability may occur. It is advised that the solderability of the device leads be assessed after an extended period of storage, over one year.

### **SOLDERING RECOMMENDATIONS**

- 1. For manual soldering the soldering iron tip temperature is not to exceed 370 °C. Higher temperatures may alter device performance and reliability.
- Re-Flow soldering method is not recommended. Wave soldering may be employed, however solder should not touch the cover glass.



Mechanical Information

### **COMPLETED ASSEMBLY**

#### Notes:

- 1. See Ordering Information for marking code.
- 2. No materials to interfere with clearance through package holes.
- 3. Imaging Array is centered at the package center.
- 4. Length dimensions in mm units

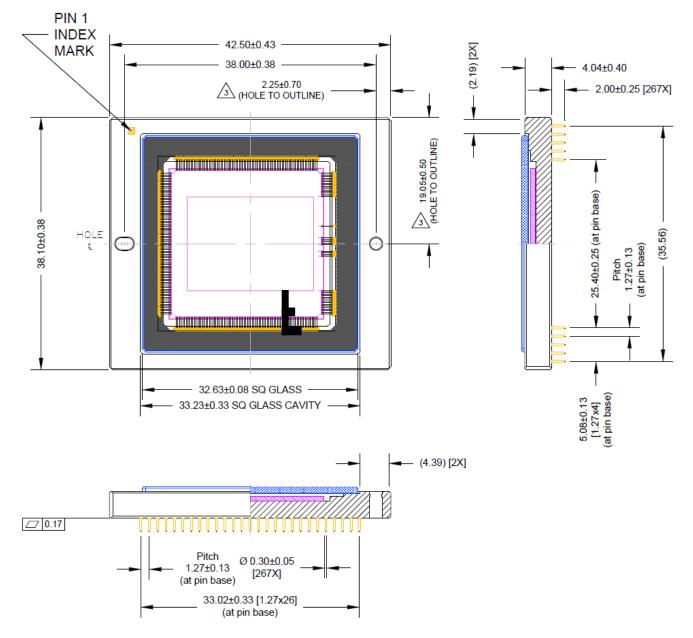



Figure 28: Completed Assembly (1 of 5)



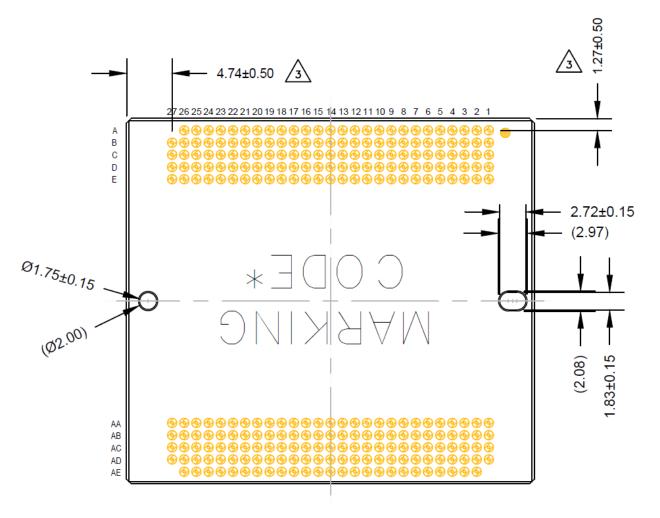



Figure 29: Completed Assembly (2 of 5)



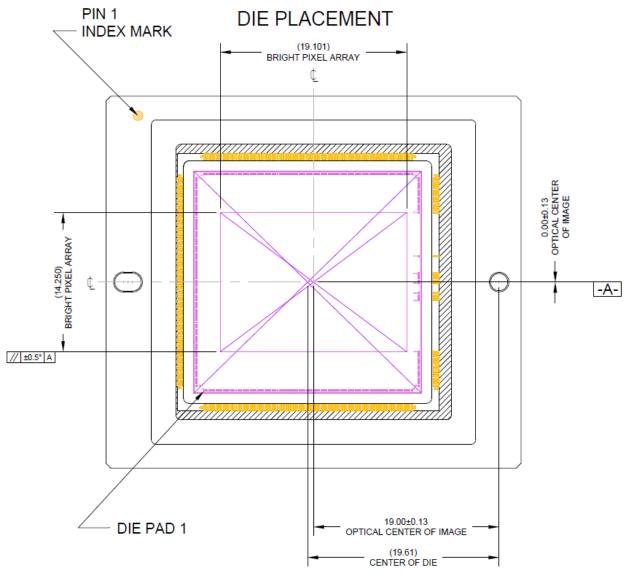



Figure 30: Completed Assembly (3 of 5)



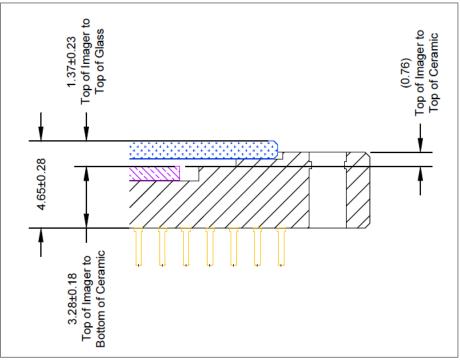



Figure 31: Completed Assembly (4 of 5)

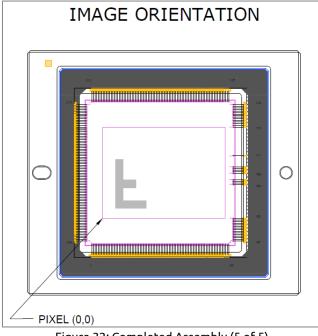



Figure 32: Completed Assembly (5 of 5)



# MAR (MULTI-LAYER ANTIREFLECTIVE COATING) COVER GLASS

#### Notes:

- 1. Units: IN [MM]
- 2. A-Zone Dust/Scratch Spec: 10 µm Maximum
- 3. Index of refraction: 1.5231

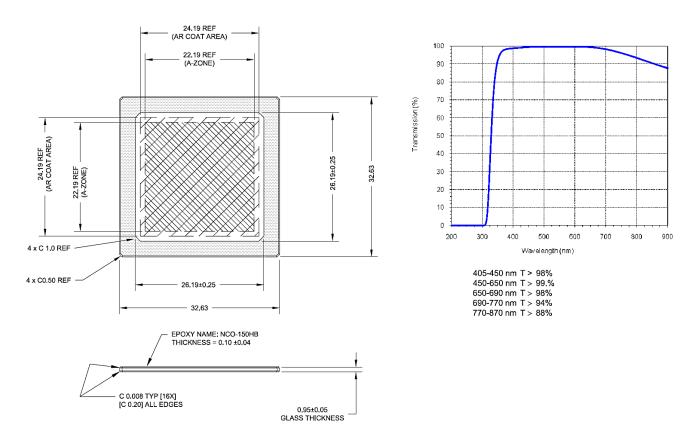



Figure 33: MAR Cover Glass Specification



# **Quality Assurance and Reliability**

## **QUALITY AND RELIABILITY**

All image sensors conform to the specifications stated in this document. This is accomplished through a combination of statistical process control and visual inspection and electrical testing at key points of the manufacturing process, using industry standard methods. Information concerning the quality assurance and reliability testing procedures and results are available from ON Semiconductor upon request. For further information refer to Application Note *Quality and Reliability*.

### REPLACEMENT

All devices are warranted against failure in accordance with the *Terms of Sale*. Devices that fail due to mechanical and electrical damage caused by the customer will not be replaced.

### LIABILITY OF THE SUPPLIER

A reject is defined as an image sensor that does not meet all of the specifications in this document upon receipt by the customer. Product liability is limited to the cost of the defective item, as defined in the *Terms of Sale*.

### LIABILITY OF THE CUSTOMER

Damage from mishandling (scratches or breakage), electrostatic discharge (ESD), or other electrical misuse of the device beyond the stated operating or storage limits, which occurred after receipt of the sensor by the customer, shall be the responsibility of the customer.

### **TEST DATA RETENTION**

Image sensors shall have an identifying number traceable to a test data file. Test data shall be kept for a period of 2 years after date of delivery.

### MECHANICAL

The device assembly drawing is provided as a reference.

ON Semiconductor reserves the right to change any information contained herein without notice. All information furnished by ON Semiconductor is believed to be accurate.

# Life Support Applications Policy

ON Semiconductor image sensors are not authorized for and should not be used within Life Support Systems without the specific written consent of ON Semiconductor.



# **Revision Changes**

| Revision Number | Description of Changes                                                                                                                                                                                                                                                             |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0             | Initial Release                                                                                                                                                                                                                                                                    |
| 1.1             | <ul> <li>Correction to Figure "Number of LVDS pairs (ports) used vs. bit depth"</li> </ul>                                                                                                                                                                                         |
| 1.2             | <ul> <li>Correction to Figure "Number of LVDS pairs (ports) used vs. bit depth"</li> <li>Update to the responsivity model and some specification values</li> <li>Improved low temperature operating temperature specification</li> <li>Update of register summary table</li> </ul> |
| 1.3             | <ul> <li>Revised Clk In spec to be 45MHz -&gt; 50 MHz</li> <li>Updated branding</li> </ul>                                                                                                                                                                                         |

**ON Semiconductor** and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and expenses, and reasonable attorney fees arising out of, directly or indirectly or indirectly as periodic liaim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative