
GigE Vision is becoming a more powerful and reliable 
interface in the machine vision market. In addition to IEEE 
1394a/b (FireWire) and Camera Link, GigE Vision is now 
found in many applications, for example, in traffic control, 
PCB inspection, and medical care. The GigE Vision stan-
dard makes a persuasive argument especially regarding 
bandwidth, transmission mechanism, reliability, and cable 
length. GigE Vision is based on the topology of well-estab-
lished Gigabit Ethernet technology. Gigabit Ethernet has 
the advantage of  wide penetration in both the industrial 
and consumer markets and serves as the basis for an easy-
to-use, low-cost interface for a wide variety of applications.

GigE Vision CPU Load 
In the machine vision market, there are still some open 
questions regarding GigE Vision. Whenever Gigabit Ether-
net is discussed in connection with machine vision, CPU 
usage and latency times in the PC are among the most 
interesting and controversial topics. Different players in 
the machine vision industry still must be convinced that 
the CPU load generated by the use of a GigE transmission 
mechanism is within acceptable limits. The main difference 
between GigE and FireWire or Camera Link is that with 
GigE there is no CPU-independent incoming data man-
agement. This means that every incoming packet must be 
handled when arriving in the PC and copied afterwards. 
This process always requires CPU involvement. To keep 
the CPU load as low as possible, Basler offers two different 
GigE Vision drivers: a filter driver and a performance driver.

The Basler Filter Driver
The Basler filter driver quickly separates incoming packets 
and transfers them directly to the application. The filter 
driver can be used with all network interface cards avail-
able on the market. The CPU load associated with the 
filter driver is generally attributable to the fact that packets 
must normally be copied two times.

The Basler Performance Driver
The Basler performance driver also separates incoming 
packets and transfers them directly to the application. The 
CPU load associated with the performance driver is gener-
ally attributable to the need to make at least one copy of 
the incoming data. The main advantage of the performance 
driver is that it lowers the CPU load needed to service the 
network traffic between the PC and the camera(s) even 
more significantly than the filter driver.

The Basler performance driver is a hardware specific GigE 
Vision network driver and is compatible with network 
interface cards that use specific Intel chipsets.

GigE Vision - CPU Load and Latency
Filter and Performance Driver CPU Load 
Comparison
Due to the different architectures of the drivers and to dif-
ferent hardware platforms, the CPU load of the filter and 
the performance drivers varies. There are other param-
eters that also contribute to this effect including: network 
vendors, network topology, packet size of the data transfer 
stream, bandwidth, and the network class (avoids packet 
resends).

As described above, the filter driver and the performance 
driver use the CPU with different intensities. The graphs 
in Figures 1 and 2 reflect typical results for a medium 
performance PC and a bandwidth situation comparable to 
IEEE 1394b. The PC is equipped with a Pentium dual core 
2.8 GHz processor, an Intel Pro 1000 GT network card, 
and has the Basler pylon SDK installed. The measurements 
were performed with a Basler piA640-210gm. Network 
workloads were between 15 and 61 Mbytes/s and the 
packet size was either 500 or 4000 bytes. 

Figure 1: CPU load with a packet size of 500 Byte

Figure 2: CPU load with a packet size of 4000 Byte
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As you can see, the performance driver has a significantly 
lower CPU load than the filter driver. In addition, you can 
see that a larger packet size has a positive impact on the 
CPU load. A data stream based on small packets includes 
more overhead/protocol data than a data stream with large 
packets. A typical CPU load imposed by a GigE based ap-
plication is 5 %

For high performance applications, we suggest using the 
pylon performance driver and an Intel network card that 
supports jumbo frames (i.e., a 6 Kbyte packet size). 

To make the evaluation of measure-
ment data more transparent, Basler 
is providing a Java script that can be 
used to determine the current CPU 
load on a machine vision system’s 
host PC. This script uses the same 
Windows operating system functions 
as the Windows Task Manager, and 
the results are comparable.

For the workload evaluation process, a sample program 
from the pylon SDK  called ‘AcquireContinuous.cpp’ is used. 
This application continuously acquires images and stores 
them in the application’s buffer. This program does not per-
form any additional user interface activities such as display-
ing the image or analyzing the image content.

// CPU Load.
//
// This script samples the systemwide CPU load at regular intervals.
//
// Run by using “cscript /nologo cpuload.js” within a console.
// Stop by pressing Ctrl-C.
//
// Note: Because the Win32_PerfFormattedData_PerfOS_Processor formatted
// data class is not available on earlier Windows versions,
// this script only runs on Windows XP and above.

var wbemFlagReturnImmediately = 0x10;
var wbemFlagForwardOnly = 0x20;

var strComputer = “.”;
var objWMIService = GetObject(“winmgmts:\\\\” + strComputer + “\\root
\\CIMV2”);

var total = objWMIService.Get(“Win32_PerfFormattedData_PerfOS_
Processor.Name=’_Total’”)

for (;;)
{
 total.Refresh_();
 WScript.Echo(“\rProcessor Time:
“ + total.PercentProcessorTime + “%  “);
 WScript.Sleep( 1000 );
}

[…]

        // Grab c_ImagesToGrab times
        for ( int n = 0; n < c_ImagesToGrab; n++)
        {
            // Wait for the grabbed image with a timeout of 3 seconds
            if ( StreamGrabber.GetWaitObject().Wait( 3000 ))
            {
                // Get the grab result from the grabber‘s result queue
                GrabResult Result;
                StreamGrabber.RetrieveResult( Result );

                if ( Grabbed == Result.Status() )
                {
                   // Grabbing was successful, process image
                    cout << „Image #“ << n << „ acquired!“ << endl;
                    cout << „Size: „ << Result.GetSizeX() << „ x „
                         << Result.GetSizeY() << endl;

                    // Get the pointer to the image buffer
                    const uint8_t *pImageBuffer = (uint8_t *) Result.Buffer();
                    cout << „Gray value of first pixel:
    „ << (uint32_t) pImageBuffer[0]
                         << endl << endl;

                    // Reuse the buffer for grabbing the next image
                    if ( n < c_ImagesToGrab - c_nBuffers )
                        StreamGrabber.QueueBuffer( Result.Handle(), NULL );
                }
                else if ( Failed == Result.Status() )
                {
                    // Error Handling
                    cerr << „No image acquired!“ << endl;
                    cerr << „Error code : 0x“ << hex
                         << Result.GetErrorCode() << endl;
                    cerr <<“Error description : „
                         << Result.GetErrorDescription() << endl;

                    // Reuse the buffer for grabbing the next image
                    if ( n < c_ImagesToGrab - c_nBuffers )
                        StreamGrabber.QueueBuffer( Result.Handle(), NULL );
                }
            }
            else {
                // Timeout
                cerr << „Timeout occurred!“ << endl;

                // Get the pending buffer back (It is not allowed to deregister
                // buffers when they are still queued)
                StreamGrabber.CancelGrab();

            // Get all buffers back
            for ( GrabResult r; StreamGrabber.RetrieveResult( r ););

                // Cancel loop
                break;
            }
        }

        // Stop acquisition
        Camera.AcquisitionStop.Execute();

 […]

Java script to determine CPU load

Part of the ‘AcquireContinuous.cpp’ program used to create a CPU load

22



GigE Vision Latency Time
The latency time of the GigE Vision interface is frequently 
discussed in the machine vision market. There are many 
parameters that have an impact on the latency time of a 
machine vision application. 

In machine vision applications, there are usually two sce-
narios. In the first scenario, image acquisition is started by 
a program (a software trigger). In the second scenario, an 
external electrical trigger (a hardware trigger) is used. 

With the software trigger scenario, the application creates 
an exposure start command using the Basler pylon API. The 
pylon API passes the command through the IP stack. Next, 
the command is transmitted over the physical network layer 
to the camera. When the command is received, the camera 
starts exposure of the sensor.

With the hardware trigger scenario, passage of a command 
through the IP stack and over the network layer is not nec-
essary. The electrical signal is applied directly to the camera 
and immediately starts sensor exposure.

The receipt of the data stream from the camera by the host 
PC is identical in both scenarios. The camera transmits the 
streaming data across the network layer to the GigE vision 
driver (performance or filter driver) via the Pylon API to the 
image buffer of the application.

Figure 3 shows the logical path of the software trigger 
(green) from the application to the camera and the data 
stream path from the camera to the application (blue).

To determine the latency times of scenario one and two, 
different time stamps are defined:

 � Software trigger start

 � Exposure start command received by the camera

 � Hardware trigger start

 � Start of exposure

 � End of exposure

 � Images received by the camera

Figures 4 and 5 show timelines for the trigger signals and 
their jitter. The measurements were made for GigE and 
IEEE 1394 to be able to compare both technologies. The 
measurements were performed with Basler scA640-70fm/
gm cameras.

As Figure 4 shows,  the timeline of the software trigger is 
very short in relation to the total timeline, but the variation 
is significant. This variation is caused by the IP stack of the 
operating system. There is no significant influence from the 
GigE Vision driver. The latency time of GigE and FireWire 
are very similar and are both in the range of 30%.

Figure 3: Trigger logical path

Figure 4: Latency time of software trigger for GigE vs. IEEE 1394
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The timeline from the hardware trigger to the start of 
exposure depends on the camera model and is in the area 
of 50µs (please refer to the user’s manual for your specific 
camera model).

The timeline for the data stream from the camera to the 
image buffer of the application depends on several different 
parameters including: performance of the host PC, image 
size, packet size, bandwidth of the network, etc.

The jitter of the timeline is very small and is approximately 
5% of the transmission time of the data stream. This is true 
because the architecture of the GigE driver is very efficient. 

Evaluations have also shown that the process priority has 
no significant impact on latency time. The largest fraction 
of the processing time is used in the IP stack or in the GigE 
Vision driver, which are independent of the process priority. 

In addition to the latency time of the camera and the 
operating system, there are other components that can 
add additional delays and jitter times. A network switch, 
for example, can cause this effect. The extent of the delay 
depends on the hardware vendor. The hardware vendor’s 
data sheet can provide more detailed information. 

To create a machine vision application with near to 
realtime conditions, we suggest using hardware triggered 
image acquisition and a network topology that does not 
include a network switch.

Measurement results indicate that GigE is a powerful, easy-
to-use technique comparable to IEEE 1394. The CPU load 
is slightly higher than with FireWire, but can be compensat-
ed for with a more powerful hardware architecture. The 
jitter behavior is directly comparable to FireWire and there 
are no disadvantages in system architecture.

Figure 5: Exposure start delay for the scA 640-70

Figure 6: Latency time of image transmission for GigE vs. IEEE 1394
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