
GigE Vision is becoming a more powerful and reliable
interface in the machine vision market. In addition to IEEE
1394a/b (FireWire) and Camera Link, GigE Vision is now
found in many applications, for example, in traffic control,
PCB inspection, and medical care. The GigE Vision stan-
dard makes a persuasive argument especially regarding
bandwidth, transmission mechanism, reliability, and cable
length. GigE Vision is based on the topology of well-estab-
lished Gigabit Ethernet technology. Gigabit Ethernet has
the advantage of wide penetration in both the industrial
and consumer markets and serves as the basis for an easy-
to-use, low-cost interface for a wide variety of applications.

GigE Vision CPU Load
In the machine vision market, there are still some open
questions regarding GigE Vision. Whenever Gigabit Ether-
net is discussed in connection with machine vision, CPU
usage and latency times in the PC are among the most
interesting and controversial topics. Different players in
the machine vision industry still must be convinced that
the CPU load generated by the use of a GigE transmission
mechanism is within acceptable limits. The main difference
between GigE and FireWire or Camera Link is that with
GigE there is no CPU-independent incoming data man-
agement. This means that every incoming packet must be
handled when arriving in the PC and copied afterwards.
This process always requires CPU involvement. To keep
the CPU load as low as possible, Basler offers two different
GigE Vision drivers: a filter driver and a performance driver.

The Basler Filter Driver
The Basler filter driver quickly separates incoming packets
and transfers them directly to the application. The filter
driver can be used with all network interface cards avail-
able on the market. The CPU load associated with the
filter driver is generally attributable to the fact that packets
must normally be copied two times.

The Basler Performance Driver
The Basler performance driver also separates incoming
packets and transfers them directly to the application. The
CPU load associated with the performance driver is gener-
ally attributable to the need to make at least one copy of
the incoming data. The main advantage of the performance
driver is that it lowers the CPU load needed to service the
network traffic between the PC and the camera(s) even
more significantly than the filter driver.

The Basler performance driver is a hardware specific GigE
Vision network driver and is compatible with network
interface cards that use specific Intel chipsets.

GigE Vision - CPU Load and Latency
Filter and Performance Driver CPU Load
Comparison
Due to the different architectures of the drivers and to dif-
ferent hardware platforms, the CPU load of the filter and
the performance drivers varies. There are other param-
eters that also contribute to this effect including: network
vendors, network topology, packet size of the data transfer
stream, bandwidth, and the network class (avoids packet
resends).

As described above, the filter driver and the performance
driver use the CPU with different intensities. The graphs
in Figures 1 and 2 reflect typical results for a medium
performance PC and a bandwidth situation comparable to
IEEE 1394b. The PC is equipped with a Pentium dual core
2.8 GHz processor, an Intel Pro 1000 GT network card,
and has the Basler pylon SDK installed. The measurements
were performed with a Basler piA640-210gm. Network
workloads were between 15 and 61 Mbytes/s and the
packet size was either 500 or 4000 bytes.

Figure 1: CPU load with a packet size of 500 Byte

Figure 2: CPU load with a packet size of 4000 Byte

WHITE PAPER
www.baslerweb.com

1

As you can see, the performance driver has a significantly
lower CPU load than the filter driver. In addition, you can
see that a larger packet size has a positive impact on the
CPU load. A data stream based on small packets includes
more overhead/protocol data than a data stream with large
packets. A typical CPU load imposed by a GigE based ap-
plication is 5 %

For high performance applications, we suggest using the
pylon performance driver and an Intel network card that
supports jumbo frames (i.e., a 6 Kbyte packet size).

To make the evaluation of measure-
ment data more transparent, Basler
is providing a Java script that can be
used to determine the current CPU
load on a machine vision system’s
host PC. This script uses the same
Windows operating system functions
as the Windows Task Manager, and
the results are comparable.

For the workload evaluation process, a sample program
from the pylon SDK called ‘AcquireContinuous.cpp’ is used.
This application continuously acquires images and stores
them in the application’s buffer. This program does not per-
form any additional user interface activities such as display-
ing the image or analyzing the image content.

// CPU Load.
//
// This script samples the systemwide CPU load at regular intervals.
//
// Run by using “cscript /nologo cpuload.js” within a console.
// Stop by pressing Ctrl-C.
//
// Note: Because the Win32_PerfFormattedData_PerfOS_Processor formatted
// data class is not available on earlier Windows versions,
// this script only runs on Windows XP and above.

var wbemFlagReturnImmediately = 0x10;
var wbemFlagForwardOnly = 0x20;

var strComputer = “.”;
var objWMIService = GetObject(“winmgmts:\\\\” + strComputer + “\\root
\\CIMV2”);

var total = objWMIService.Get(“Win32_PerfFormattedData_PerfOS_
Processor.Name=’_Total’”)

for (;;)
{
 total.Refresh_();
 WScript.Echo(“\rProcessor Time:
“ + total.PercentProcessorTime + “% “);
 WScript.Sleep(1000);
}

[…]

 // Grab c_ImagesToGrab times
 for (int n = 0; n < c_ImagesToGrab; n++)
 {
 // Wait for the grabbed image with a timeout of 3 seconds
 if (StreamGrabber.GetWaitObject().Wait(3000))
 {
 // Get the grab result from the grabber‘s result queue
 GrabResult Result;
 StreamGrabber.RetrieveResult(Result);

 if (Grabbed == Result.Status())
 {
 // Grabbing was successful, process image
 cout << „Image #“ << n << „ acquired!“ << endl;
 cout << „Size: „ << Result.GetSizeX() << „ x „
 << Result.GetSizeY() << endl;

 // Get the pointer to the image buffer
 const uint8_t *pImageBuffer = (uint8_t *) Result.Buffer();
 cout << „Gray value of first pixel:
 „ << (uint32_t) pImageBuffer[0]
 << endl << endl;

 // Reuse the buffer for grabbing the next image
 if (n < c_ImagesToGrab - c_nBuffers)
 StreamGrabber.QueueBuffer(Result.Handle(), NULL);
 }
 else if (Failed == Result.Status())
 {
 // Error Handling
 cerr << „No image acquired!“ << endl;
 cerr << „Error code : 0x“ << hex
 << Result.GetErrorCode() << endl;
 cerr <<“Error description : „
 << Result.GetErrorDescription() << endl;

 // Reuse the buffer for grabbing the next image
 if (n < c_ImagesToGrab - c_nBuffers)
 StreamGrabber.QueueBuffer(Result.Handle(), NULL);
 }
 }
 else {
 // Timeout
 cerr << „Timeout occurred!“ << endl;

 // Get the pending buffer back (It is not allowed to deregister
 // buffers when they are still queued)
 StreamGrabber.CancelGrab();

 // Get all buffers back
 for (GrabResult r; StreamGrabber.RetrieveResult(r););

 // Cancel loop
 break;
 }
 }

 // Stop acquisition
 Camera.AcquisitionStop.Execute();

 […]

Java script to determine CPU load

Part of the ‘AcquireContinuous.cpp’ program used to create a CPU load

22

GigE Vision Latency Time
The latency time of the GigE Vision interface is frequently
discussed in the machine vision market. There are many
parameters that have an impact on the latency time of a
machine vision application.

In machine vision applications, there are usually two sce-
narios. In the first scenario, image acquisition is started by
a program (a software trigger). In the second scenario, an
external electrical trigger (a hardware trigger) is used.

With the software trigger scenario, the application creates
an exposure start command using the Basler pylon API. The
pylon API passes the command through the IP stack. Next,
the command is transmitted over the physical network layer
to the camera. When the command is received, the camera
starts exposure of the sensor.

With the hardware trigger scenario, passage of a command
through the IP stack and over the network layer is not nec-
essary. The electrical signal is applied directly to the camera
and immediately starts sensor exposure.

The receipt of the data stream from the camera by the host
PC is identical in both scenarios. The camera transmits the
streaming data across the network layer to the GigE vision
driver (performance or filter driver) via the Pylon API to the
image buffer of the application.

Figure 3 shows the logical path of the software trigger
(green) from the application to the camera and the data
stream path from the camera to the application (blue).

To determine the latency times of scenario one and two,
different time stamps are defined:

 � Software trigger start

 � Exposure start command received by the camera

 � Hardware trigger start

 � Start of exposure

 � End of exposure

 � Images received by the camera

Figures 4 and 5 show timelines for the trigger signals and
their jitter. The measurements were made for GigE and
IEEE 1394 to be able to compare both technologies. The
measurements were performed with Basler scA640-70fm/
gm cameras.

As Figure 4 shows, the timeline of the software trigger is
very short in relation to the total timeline, but the variation
is significant. This variation is caused by the IP stack of the
operating system. There is no significant influence from the
GigE Vision driver. The latency time of GigE and FireWire
are very similar and are both in the range of 30%.

Figure 3: Trigger logical path

Figure 4: Latency time of software trigger for GigE vs. IEEE 1394

33

The timeline from the hardware trigger to the start of
exposure depends on the camera model and is in the area
of 50µs (please refer to the user’s manual for your specific
camera model).

The timeline for the data stream from the camera to the
image buffer of the application depends on several different
parameters including: performance of the host PC, image
size, packet size, bandwidth of the network, etc.

The jitter of the timeline is very small and is approximately
5% of the transmission time of the data stream. This is true
because the architecture of the GigE driver is very efficient.

Evaluations have also shown that the process priority has
no significant impact on latency time. The largest fraction
of the processing time is used in the IP stack or in the GigE
Vision driver, which are independent of the process priority.

In addition to the latency time of the camera and the
operating system, there are other components that can
add additional delays and jitter times. A network switch,
for example, can cause this effect. The extent of the delay
depends on the hardware vendor. The hardware vendor’s
data sheet can provide more detailed information.

To create a machine vision application with near to
realtime conditions, we suggest using hardware triggered
image acquisition and a network topology that does not
include a network switch.

Measurement results indicate that GigE is a powerful, easy-
to-use technique comparable to IEEE 1394. The CPU load
is slightly higher than with FireWire, but can be compensat-
ed for with a more powerful hardware architecture. The
jitter behavior is directly comparable to FireWire and there
are no disadvantages in system architecture.

Figure 5: Exposure start delay for the scA 640-70

Figure 6: Latency time of image transmission for GigE vs. IEEE 1394

Basler AG
Germany, Headquarters
Tel. +49 4102 463 500
Fax +49 4102 463 599
bc.sales.europe@baslerweb.com
www.baslerweb.com

USA
Tel. +1 610 280 0171
Fax +1 610 280 7608
bc.sales.usa@baslerweb.com

Asia
Tel. +65 6425 0472
Fax +65 6425 0473
bc.sales.asia@baslerweb.com

4

12/2007

